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Abstract: Many types of hyperspectral image processing can benefit from 

knowledge of noise levels in the data, which can be derived from sensor 

physics. Surprisingly, such information is rarely provided or exploited. 

Usually, the image data are represented as radiance values, but this 

representation can lead to suboptimal results, for example in spectral 

difference metrics. Also, radiance data do not provide an appropriate 

baseline for calculation of image compression ratios. This paper defines two 

alternative representations of hyperspectral image data, aiming to make 

sensor noise accessible to image processing. A “corrected raw data” 

representation is proportional to the photoelectron count and can be 

processed like radiance data, while also offering simpler estimation of noise 

and somewhat more compact storage. A variance-stabilized representation 

is obtained by square-root transformation of the photodetector signal to 

make the noise signal-independent and constant across all bands while also 

reducing data volume by almost a factor 2. Then the data size is comparable 

to the fundamental information capacity of the sensor, giving a more 

appropriate measure of uncompressed data size. It is noted that the variance-

stabilized representation has parallels in other fields of imaging. The 

alternative data representations provide an opportunity to reformulate 

hyperspectral processing algorithms to take actual sensor noise into 

account. 
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1. Introduction 

Hyperspectral imaging depends on image processing to extract information from image data. 

A hyperspectral data set should provide accurate information about light levels for the 

processing, but the hyperspectral sensor inevitably adds noise to the signal. The noise level is 

an important input parameter to many image processing algorithms, and therefore also a 

desirable data product from the sensor. Furthermore, in a practical system it is important that 

the sensor data can be represented in a way that is as compact as possible, since the data 

volumes produced by hyperspectral sensors are large even for today's computers. 
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Image sensor technology has made very significant progress since the first hyperspectral 

sensors appeared in the late 80's. In the current generation of hyperspectral sensors, the 

dominating noise contribution is a fundamental quantum mechanical effect, namely the 

random arrival and absorption of photons. This photon noise is signal-dependent, but well 

characterized and understood by the sensor designers. Therefore, good estimates of noise 

amplitude can be provided to image processing, based on the sensor physics. As will be 

shown here, information about sensor noise can also lead to reductions in data volume. 

Arguably, the sensor can provide two images per recording, one representing 

measurements of incoming radiance and another representing estimates of noise. However, 

hyperspectral data formats tend not to make the “noise image” easily accessible for the data 

user. There is a large body of literature on methods for noise estimation from hyperspectral 

image data, but there appears to be very few works that make use of noise information derived 

from sensor physics. 

To substantiate this impression, consider the literature on hyperspectral image 

compression: Clearly, compression is a type of image processing for which noise information 

is highly relevant, since an important objective must be to avoid wasting storage space on 

noise. In the 10 most highly cited papers on hyperspectral image compression [1–11], as well 

as more than 10 of the most recent papers on this topic [12], there is no mention of noise 

estimation based on sensor properties. Also, the metrics for reconstruction error used by these 

and many other papers all operate on radiance values. It will be pointed out here that error 

metrics based on radiance are suboptimal when considering the sensor physics. About four of 

the papers concern lossless compression, where noise estimation and error metric are not 

directly relevant. However it is well known, and will be illustrated here, that lossless 

compression is not necessarily desirable since it implies preserving random noise in full 

detail. 

In other fields, particularly in astronomy, the use of sensor noise information is well 

established in methods for storage and processing of images. Some of these results are 

reviewed in section 3.4 below, and found to be highly relevant for hyperspectral imaging. 

Although the value of sensor noise information in hyperspectral imaging has been pointed 

out before [13], the above literature review suggest that there is a need for a closer connection 

between hyperspectral sensor physics and image processing. The aim of this paper is to 

contribute to this connection, partly based on experience from development of an airborne 

real-time processing system for hyperspectral images [14] and collaboration with a 

manufacturer of hyperspectral sensors [15]. 

This paper first formulates a simple signal model which applies to many hyperspectral 

sensors. The main part of the paper describes and discusses different representations of the 

image data. Two of these, raw data and radiance data, are conventional and widely used. The 

paper then introduces two alternative representations, “corrected raw data” and “variance 

stabilized data”. For each representation, it is discussed how noise levels can be estimated 

from the data, for exploitation in image processing. Also, the data volume requirements for 

the different representations are compared. Consideration of sensor noise characteristics is 

shown to lead to efficient formats for data storage, with implications for further compression 

of hyperspectral data. It is pointed out that a variance-stabilized representation has significant 

benefits for processing, with parallels to standard representations of conventional imagery and 

to the information-theoretic channel capacity of the sensor. 

This paper is based on Ref. 16, with substantial revision and some corrections. 

2. Hyperspectral image recording process and information capacity 

The signal chain of a hyperspectral sensor is illustrated schematically in Fig. 1 for a single 

light sample. The signal from the scene passes through optics, photodetector, electronics and 

software. The interdisciplinary field of optical sensing is well described in textbooks, for 

example Refs. 17 and 18. Here, a model of the recording process will be formulated with the 
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aim of being as simple as possible while capturing characteristics important to hyperspectral 

imaging. 
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Fig. 1. Model of the light sampling process, common to several important types of 
hyperspectral sensors in which each light sample corresponds to a single photodetector readout. 

For the sensor model in this paper, the quantum efficiency is defined to account for losses in 

the optics and filtering, as well as the photodetector. Due to the random arrival and absorption 
of photons, the photoelectron count has a Poisson-distributed random variation. This “photon 

noise” is the dominating noise mechanism in most hyperspectral sensors. 

2.1 Basic signal model 

The sensor model formulated here applies to hyperspectral sensor types where each radiance 

sample in the image is derived from a single photodetector reading. This is the case for the 

commonly used pushbroom-scanning imaging spectrometers, exemplified by AISA [19] or 

HySpex [15]. The model also applies to whiskbroom-scanning sensors like AVIRIS [20], as 

well as framing sensors based on filter wheels or tunable filters. Although these different 

sensor types sample the hyperspectral image cube differently, the characteristics of the 

photodetector impact the elements of the cube in a similar manner. The sensor model used 

here does not apply directly to sensors based on interferometers or resampling. In these cases 

a single light sample in the cube has contributions from several photodetector readings and a 

somewhat more complex model will be needed to describe sensor noise. 

The photodetector is usually an element in a one- or two-dimensional array of 

photodetectors. For the sensor types considered here, each photodetector element corresponds 

to a band index i and spatial pixel index j. For a pushbroom-scanning sensor, the pixel index j 

indicates the position along the line-shaped instantaneous field of view. For a frame imaging 

sensor, j indicates the pixel position in a two-dimensional field of view. 

Consider a spectral band centered at a wavelength λ[i] with width Δλ[i], and an image 

pixel where the spectral radiance from the scene in band i is L[i,j] (power per unit wavelength, 

area and solid angle). In the notation here, index [i] refers to a vector with one element for 

each band. Indices [i,j] refer to a matrix with elements corresponding to all bands and all 

spatial pixels seen simultaneously by the sensor. Sometimes the indices are omitted for 

simplicity. 

Light enters the sensor aperture with area A. For each spatial pixel j, the sensor receives 

light over an instantaneous field of view Ω (of course pointing in different directions for 

different pixels). Then for each spectral band the sensor selects light within a spectral range 

Δλ[i] centered on the wavelength λ[i]. Light is collected over a time t, known as the 

integration time (or exposure time). The amount of light that corresponds to this spatial, 

spectral and temporal selection can be expressed as the number of photons entering the 

sensor: 

 
[ ]

[ , ] [ , ] [ ]ph

i
N i j L i j tA i

hc


   (1) 

where h is Planck's constant and c the speed of light. Note that Eq. (1) is a simplifying 

notation where dense spectral sampling is assumed, so that scene radiance and photon energy 
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can be assumed to be constant within the band. Otherwise the multiplication by Δλ must be 

replaced by an appropriate integral over wavelength. 

Photons are absorbed in the photodetector by excitation of electrons. These excited 

electrons, known as photoelectrons, are collected and become the electrical signal from the 

photodetector. The resulting signal can be expressed as a photoelectron count 

 
d[ , ] [ , ] [ , ] [ , ] .phN i j i j N i j I i j t N     (2) 

Here the factor η[i,j] is the quantum efficiency, which accounts for signal losses and sensor 

response nonuniformity as discussed below. The last terms in Eq. (2) account for unwanted 

contributions to the signal: The dark current Id[i,j] (electrons per unit time in a particular 

detector element) is apparent signal from effects such as thermally excited electrons or 

thermal radiation emitted within the sensor enclosure. The term δN accounts for the readout 

noise, the total signal variability in the transfer and amplification of the photoelectron signal. 

The readout noise is assumed to be Gaussian with zero mean and standard deviation δN. 

After amplification by a gain factor G, the photoelectron signal is digitized to raw digital 

numbers Draw: 

 
0[ , ] ( [ , ] )rawD i j round GN i j D   (3) 

where round() represents the rounding of analog signals to discrete values in digitization. D0 

represents a possible offset in the readout electronics. In the following, it will be assumed that 

D0 is zero, or that the offset has been subtracted. 

In astronomy, with specialized high-performance sensors, a data representation 

corresponding to G=1 is often used. Commercial imaging systems usually have significant 

readout noise, and are operated with G<1 so that each increment in Draw corresponds to 

several photoelectrons. Some newer types of commercial photodetector array can work 

meaningfully with 1G  so that individual photoelectrons give a measurable signal 

increment. This is the case for silicon-based electron-multiplying CCDs [21] and “scientific 

CMOS” arrays [22] as well as avalanche photodiodes based on HgCdTe [23]. 

Note that the photodetector elements have a limited capacity for holding photoelectrons, 

known as the full well capacity, here denoted Nmax. This effect sets an upper limit on the 

measurable signal range and on the range of Draw. Stronger signals are said to be in saturation, 

and will typically produce some maximum output value Dmax. 

The set of Draw[i,j] values form a spectral image cube, or a part of it, depending on the 

sensor type. (Recall that j indexes the spatial pixels that are seen simultaneously by the 

sensor.) Before processing, the data are usually first corrected for sensor effects and 

transformed to represent for example radiance values. The data correction and representation 

is a central topic of this paper. 

2.2 Quantum efficiency 

Now consider the quantum efficiency η, which describes signal losses and is of particular 

interest for a hyperspectral sensor. A part of the loss occurs in the optics, due to reflections or 

absorption as well as to inefficiencies in the spectral selection. Another part of the loss occurs 

in the photodetector element: Photons may get absorbed by unwanted processes that do not 

produce a photoelectron, and some photoelectrons may be lost and not become part of the 

signal. In Eq. (2), the quantum efficiency matrix η[i,j] is defined to account for all losses 

through the system. For simplicity at this point, the matrix η[i,j] also incorporates residual 

nonuniformities of gain and optical throughput, assumed to be small. Conventionally, 

quantum efficiency is defined as a property of the detector only, or lumped with other factors 

into a responsivity value. For the sensor model here, however, it is relevant to define η for the 

entire sensor. 

It should be noted that for a hyperspectral sensor, the quantum efficiency tends to have a 

large variation across the spectral range. This is because the limits of the spectral range tend 
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to be determined by the falloff of detector quantum efficiency, or the transmission of optical 

components. Sensor designers tend to try to make a sensor with the widest possible spectral 

range for a given detector type, and therefore allow designs with low quantum efficiency at 

the ends of the spectral range. The spectral variation of η is illustrated by the realistic example 

in Fig. 2. The combined effects of the grating and photodetector wavelength dependencies 

lead to a very large relative variationof η across the spectral range of the sensor. 
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Fig. 2. Illustration of a possible spectral dependence of quantum efficiency (in %) for a grating-

based imaging spectrometer sensor with a silicon CCD detector array (roughly comparable to 
the HySpex VNIR-1600). Lines show the diffraction efficiency of the grating and the quantum 

efficiency of the CCD array alone, as well as the product of these. The product approximates 

the quantum efficiency η for this hypothetical but realistic sensor. Spectral variation of the 
transmission of the optics has been neglected. Over a spectral range from 400 to 1000 nm, the 

total quantum efficiency varies by a factor 11. 

2.3 Noise properties of raw data 

It is important to realize that in optical imaging, the quantization of light into photons is not 

an obscure phenomenon of academic interest, but actually causes the dominating noise 

contribution, which will be modeled here. The arrival of photons and excitation of 

photoelectrons are random processes which follow a Poisson distribution. Therefore the 

photoelectron count N is a Poisson-distributed random variable. This random variation is the 

“photon noise”, which is a fundamental lower limit on the noise properties of a photodetector. 

If N  denotes the mean photoelectron count, the photon noise has standard deviation 

 N N   (4) 

and the signal to noise ratio is / .N N N  Thus the noise is signal dependent: With 

increasing N the noise increases, but its relative amplitude becomes smaller. 

Sensors dominated by photon noise can be said to have an optimal signal to noise ratio. 

Note, however, that the sensor is then only optimal given the values of A, Ω, η, t and Δλ 

pertaining to the particular sensor, since these parameters determine N according to Eqs. (1) 

and (2). The noise performance can still be improved by modifying the sensor to increase the 

value of the AΩηtΔλ product. However increasing AΩη tends to be expensive and 

technologically difficult, while increasing t and Δλ may not be permitted by the application. 

Crucially, the measured values can provide good estimates of the photon noise, 

independently for each light sample, by replacing the mean N  in Eq. (4) by the measured 

value N. The typical error in N  estimated from the data can be found by considering a 

sample that is one standard deviation from the mean. The resulting error in estimation of N  

is then: 
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(1 ) when 1
22

N N N N N N N
N

                

Therefore, for the normal case of 1N  , the error in noise estimation from the data value 

is small. Image data representations proposed below seek to make this noise information 

easily available to the data user. 

Now consider other noise sources: The contribution of dark current Id[i,j] to the signal, 

according to Eq. (2), can also be assumed to follow a Poisson distribution. Thus in cases 

where the photoelectron signal is small, dark current can become the dominating source of 

noise. 

Finally, the digitization noise, expressed by the rounding in Eq. (3) has an RMS amplitude 

[17] of 1/ 12  on the Draw scale, corresponding to 1/ ( 12)G  electrons. As discussed below, 

this rounding error is small compared to the photon noise, except at low signal levels. 

In the early generations of hyperspectral sensors, the combination of dark current and 

readout noise were a significant or dominating contribution to the total noise. This is 

exemplified by the evolution in signal to noise ratio over successive upgrades of the AVIRIS 

sensor [20]. For the early sensors, the often-used assumption of constant additive noise was 

thus probably valid. Today, however, sensors exhibit signal-dependent noise according to 

Eq. (4). (For hyperspectral sensors at thermal infrared wavelengths, the spectral contrasts are 

often small relative to the mean signal level. In these cases the assumption of constant noise 

still holds to a good approximation even if the sensor is photon noise limited.) 
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Fig. 3. Synthetic data samples for a sensor where 12-bit raw data correspond to the signal range 

of a photodetector with full well capacity 216 electrons, resembling a regular silicon-based 

device. The synthetic data are made by randomly drawing Poisson data points with increasing 

expectation value. The signal-dependent noise level is clearly seen in the main graph, although 
it must be noted that the apparent width of the trace here is several times the standard 

deviation. Insets show magnified parts of the curve at the low and high signal ends, with 

horizontal lines representing each discrete output value. In the insets, the thin line represents 
the raw data values without digitization rounding. For low signals, the digitization causes 

significant rounding errors. At high signal levels, the precision is excessive relative to the 

noise, and storage space is wasted. 
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Several kinds of noise and radiometric errors are not part of the noise model here. 

Examples are offset drift or “hot pixel” photodetector elements with excessive noise, which 

can cause severe distortions and artifacts in the output of image processing. However these 

types of noise can generally be avoided or made negligible in state-of-the-art sensors. 

Therefore the treatment here focuses on the fundamental photon noise. 

2.4 Example illustrating photon noise in raw data 

Consider a hyperspectral sensor where the photodetector elements have a full well capacity of 

2
16

 electrons and the signal is read out as Draw values with 12 bits of precision. Then each step 

in Draw corresponds to 16 electrons. Figure 3 shows a set of simulated random Draw values 

drawn over the full range of N, illustrating how photon noise varies with signal level. For a 

signal level of N=2
8
 electrons, the standard deviation of photon noise is 

82 16 electrons, 

equal to the Draw step size. Below this signal level, rounding errors in Draw start to become 

non-negligible, and higher precision of the digitization may be needed to avoid degradation of 

the signal to noise ratio. At the other end of the scale, near the full well signal level, the 

standard deviation of photon noise is 2
8
 electrons, which corresponds to 16 steps in Draw. We 

see that for high signal levels, resolution is wasted on digitizing noise. Therefore, the raw data 

representation of hyperspectral images may be suboptimal with respect to either accuracy or 

data volume or both, depending on the resolution of the digitization. 

2.5 Information rate of the hyperspectral sensor 

In information-theoretic terms, the sampling of light level is a communication channel with a 

certain information capacity, measured in bits per sample. The channel introduces a Poisson 

distribution around the mean signal value. It has been shown [24] that when the sample values 

vary from zero to an upper limit Nmax then, in the limit of large Nmax, an upper bound for the 

information capacity is 

 2 max 2 2 max

1 1 1
log log log 1.0

2 2 2 2

e
N N


    (5) 

bits per sample. In terms of imaging, 
maxN  is the full well capacity. Thus if the full well 

capacity is 2
W

 electrons then the information capacity of the imaging system is W/2-1 bits per 

sample in the limit of large Nmax. In the example of Fig. 3, the information capacity of the 

sensor is at most 7 bits per sample, consistent with the observation that 12-bit data have 

excess precision over most of the dynamic range. Thus the information-theoretic limit 

provides clear motivation to choose more efficient data representations. 

3. Conventional and alternative representations for hyperspectral images 

The data representation of a hyperspectral image should preserve information about light 

levels, preferably expressed as standardized quantities and units. Here it is emphasized that 

the image data should also preferably provide easy access to estimates of noise. Furthermore, 

the representation should preferably fit in a compact data format. This section discusses how 

several data representations conform to these requirements. 

3.1 Raw data 

The raw data Draw can only be processed with the aid of a large set of metadata to account for 

sensor properties, including the pixel-to-pixel variations described by the dark current and 

quantum efficiency matrices Id[i,j] and η[i,j]. Therefore it is generally difficult to process raw 

data directly. This representation of hyperspectral images is at best only suitable for systems 

where processing is very tightly integrated with the sensor. 

The raw data are integers that fit within a 2-byte data type, which is how they are normally 

represented. Of course, bit shifting may be employed to reduce data volume. In the example 
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above, two 12-bit values can be stored in 3 bytes. Either way, the raw data can be stored in a 

reasonably compact format, and of course without loss of information. However the data 

volume is significantly larger than the information capacity of the sensor, as illustrated in the 

example above. 

3.2 Radiance representation 

Conventionally, the raw data Draw are converted to estimated values for incoming radiance in 

a pre-processing step, based on sensor calibration data. In principle, the radiance estimates are 

found from Eqs. (1) to (3), but in practice the conversion to radiance is based on gain and 

offset correction matrices C1[i,j] and C2[i,j] measured during sensor calibration: 

  1 2

1ˆ[ , ] [ , ] [ , ] [ , ] [ , ] [ , ]
[ , ] [ ] [ ]

raw d raw

hc
L i j D i j I i j t C i j D i j C i j t

G i j tA i i  

 
    

 
(6) 

were L̂  denotes estimates of incoming radiance. Thus in terms of the physical sensor 

parameters, the two calibration matrices can be expressed as 

 1 2[ , ] [ , ] [ , ].
[ , ] [ ] [ ]

d

hc
C i j C i j GI i j

G i j tA i i  
 


 and   

The estimated radiance values L̂  are possibly the most common representation of 

hyperspectral images. Represented in this way, the image data can be processed without 

knowing the details of the sensor. 

Signal-dependent photon noise can be estimated from each radiance sample individually 

by first reconstructing the photoelectron count 

 2

1

ˆ[ ] 1 [ , ]ˆ[ , ] [ , ] [ , ] [ ] [ , ] [ , ]
[ , ]

d

i i j
N i j L i j i j tA i I i j t C i j t

hc G C i j


 

 
     

 

L
  

From this, the photon noise can be estimated using Eq. (6) and expressed as a radiance 

noise: 

  1 1 1 2
ˆ[ , ] [ , ] [ , ] [ , ] [ , ] [ , ] [ , ]L i j GC i j N i j GC i j L i j GC i j C i j t     (7) 

Thus, with knowledge of the calibration matrices C1[i,j] and C2[i,j] and the gain G, a data 

user can estimate the photon noise from image data represented as radiance. A somewhat 

inelegant aspect of Eq. (7) is that the data user needs the full calibration matrices of the sensor 

to estimate noise. The next section discusses ways to simplify the metadata needed for noise 

estimation. 

In principle, radiance data should be stored as floating point values (usually 32 bits), both 

to avoid additional rounding error and because values in standard units rarely fit an integer 

format. To save storage space, radiance data are usually scaled and rounded to fit a more 

compact integer format (usually 16 bits), with the scaling factor supplied as part of the image 

metadata. The scaling sacrifices the (not so important) requirement of standardized data units. 

The rounding introduces an additional error, which will be discussed in the next section. 

It should be noted that the possible range of radiance values from the sensor is not well 

bounded, because of the large spectral variation of quantum efficiency discussed above. For 

bands with low quantum efficiency, the saturation level Dmax corresponds to a very large 

radiance, as expressed by Eq. (6). Therefore the radiance representation must allow a larger 

range of values than for the raw data. As an example, consider the case in Fig. 2, where the 

quantum efficiency at the blue end of the spectrum is about 10% of its peak value. Then, 

roughly speaking, the blue band can measure a 10 times higher radiance value without 

saturating. If the data are represented as integers then the bit width must be increased by 

log210=3.3 bits, compared to the raw data, to preserve the full dynamic range of the sensor. 
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The example sensor with 12-bit raw data would then need a data size of 16 bits to store the 

data as radiance values without loss of precision. An obvious way around the increase in data 

size is to use a different scaling factor for each band for conversion of radiance values to 

integers. The following section introduces such a scheme, with the added benefit of easy noise 

estimation. 

3.3 Radiance-linear “corrected raw data” representation 

In an application data flow, the sensor should provide relevant data for processing, but hide 

uninteresting sensor details. For example, the dark current of individual sensor elements, 

Id[i,j], is of little interest in data processing, but the average amount of dark current could be 

of interest for noise estimation. For the quantum efficiency η[i,j], spatial variation within a 

band is usually small to moderate, while the spectral variation can be large, as discussed 

above. In the following, a transformation of the raw data is developed that compensates for 

small and uninteresting sensor effects. The transformation produces “corrected raw data” that 

can be seen as the output of an idealized sensor, for which the sensor physics is more easily 

accessible. 

First, the overall quantum efficiency η[i,j] is split into two parts. Let η[i] (with only a band 

index) represent the average quantum efficiency over all spatial pixels for band i. Thus for a 

sensor with P spatial pixels, 

 
1

1
[ [ ,



  
P

j

i i j
P

    

Also let F[i,j] be the residual responsivity nonuniformity error defined by 

 
[ , ]

[ , ]
[ ]

i j
F i j

i




   

Defined in this way, the mean of the elements in F is 1. Here, F accounts for small 

differences in loss and gain between individual photodetector elements, as well as for residual 

variation in the optics throughput AΩ which was taken to be constant in Eq. (1). The range of 

F[i,j] values depends on the details of the sensor, but should be well within 0.5<F[i,j]<2 in 

practice. With Dmax being the full scale of raw data, let Cmax>Dmax be the new maximum data 

value for the corrected raw data. Define a scaling factor S so that 

 max

max

C
S G

D
  (8) 

By using F[i,j] and Id[i,j] to correct the data for pixel-to-pixel nonuniformities and then 

scaling by S, we obtain the corrected raw data representation DC: 

  [ , ] [ , ] [ , ]
[ , ]

C raw d

S
D i j D i j GI i j t

GF i j
   (9) 

This is proposed here as one alternative representation for hyperspectral image data. 

DC[i,j] can be considered to be scaled photoelectron counts of an idealized sensor without 

pixel-to-pixel nonuniformities and with gain S (noting that [ , [ , ]CD i j SN i j  ). Processing 

algorithms for radiance can be applied directly to the DC data, with appropriate rescaling of 

spectrally varying algorithm parameters, since 
CD  is proportional to L̂ . 

When needed, the DC[i,j] values are readily converted to radiance estimates: 

 ˆ[ , ] [ , ] [ ] [ , ]
[ ] [ ] [ ]

C C

hc
L i j D i j K i D i j

S i tA i i  
 


 (10) 

where 
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 [ ]
[ ] [ ] [ ]

hc
K i

S i tA i i  



  

Comparing with Eq. (6), we see that conversion to radiance is reduced to applying a band-

specific scaling factor K[i]. 

The noise level varies between photodetector elements as described by the responsivity 

variations F[i,j] and dark current matrix Id[i,j]. However, it can be noted that estimation of 

noise can normally be permitted to be less accurate than estimation of radiance. Therefore, it 

is generally acceptable to neglect the pixel-to-pixel variations of F[i,j] (whose mean is 1) in 

estimation of photon noise. Also, variations in gain G between photodetector elements is 

usually small and therefore neglected here. To estimate the total noise, dark current and 

readout noise should also be considered. Unless there are large nonuniformities of dark 

current Id[i,j] across the detector array, the noise contribution from dark current can be 

represented by an average value. The variance contributions from dark current and readout 

noise δN can be combined in a parameter N0: 

 
2

0 ( )dN I t N    

where dI  is the mean of the dark current matrix Id[i,j]. We can then calculate an effective 

photoelectron count which is actually an approximation to the total signal variance: 

 
0

[ , ]
[ , ] C

eff

D i j
N i j N

S
   (11) 

where the nonuniformities described by F[i,j] and Id[i,j] have been neglected. Under this 

approximation, an estimate of the noise amplitude, in photoelectrons, is obtained from the 

estimated standard deviation 

 ˆ [ , ] [ , ]effN i j N i j   (12) 

The equivalent radiance noise can then be estimated from 

 
0

[ , ]ˆ[ , ] [ ] [ , ] [ ] [ ] [ , ]C

C

D i j
L i j K i S N i j K i S N K i SD i j

S
        

where the approximation is valid when the dark current contribution is small. 

Thus the DC data can be straightforwardly converted to estimates of radiance and noise, 

given the simple parameter set K[i], S and, when needed, N0. In place of K[i], the image 

metadata can preferably include explicit values for the factors entering in K[i]: η[i], t, A and 

Ω. Of course, values for Δλ[i] and λ[i] are also supplied with the image. Then the image 

metadata not only enable calculation of radiance and noise, but also provide the user with a 

first-order model for the sensor. 

Now consider storage of DC values. If Fmin is the minimum value in the responsivity 

correction matrix F[i,j], then the possible range of DC values is 

 max

min

0 [ , ]C

SD
D i j

F
    

To adapt the DC data to an n-bit format, choose Cmax=2
n
-1, which determines S from Eq. 

(8). Observe that the DC data range is unaffected by the quantum efficiency variations 

described by η[i], and that 
min 1F  . Therefore the range of values for DC[i,j] is well bounded, 

to a much smaller range than for radiance values at a comparable level of rounding error. 
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Rounding of the DC values introduces an error with RMS amplitude 1/ 12  on the DC 

scale [17]. On the same scale, the digitization error in the raw data is max max/ ( 12)C D  or, 

equivalently, / ( 12)S G . The relative increase in the total amount of rounding error is then 

 

2
2

2 2
max max

max max

2 2

max maxmax max

(1/ 12) / ( 12) 1
1 1 .

2/ ( 12)

C D D D

C CC D

 
 

     (13) 

If, for example, the DC data are stored in a format 1 bit wider than Draw then Cmax=2Dmax 

and the rounding of DC values increases the total rounding error by 12%. This slight increase 

should be unproblematic, assuming that digitization noise in the raw data is already small 

compared to the photon noise. 

Equation (13) disregards the variations in quantum efficiency between photodetector 

elements described by F[i,j.] The element with the highest value of F[i,j], denoted Fmax, 

experiences the largest additional rounding error, as seen from Eq. (9). The error due to 

rounding of DC values remains less than the digitization noise in Draw as long as 

Cmax>FmaxDmax. Note that as long as this condition holds, it is possible to reconstruct the raw 

data exactly, using the full calibration data, since the steps in DC are smaller than the steps of 

Draw on a radiance scale. Therefore, sensor data may be stored directly as DC data during 

recording without any loss of information, even if the actual raw data are not stored. For the 

example sensor above with 12-bit raw data, the DC data could be stored losslessly in 13 bits 

even if Fmax were as large as 2. 

In summary, the corrected raw data DC can be processed directly and are easily converted 

to radiance and to estimates of sensor noise. The required metadata are simple parameters of a 

first-order sensor model, in itself informative for the data user. With a very modest increase in 

data size over the raw data, on the order of 1 bit per sample, the DC representation is fully 

lossless. This data representation has been implemented as an option for data storage in the 

HySpex line of commercial hyperspectral sensors [15]. The sensor software also provides 

streaming DC data in real time. This data stream is used for data processing in FFI's airborne 

real-time processing system [14]. 

3.4 Image data representation with variance stabilization 

Figure 3 illustrates that any representation proportional to radiance, including the DC 

representation, will be inefficient with respect to storage space, due to the signal-dependent 

noise. By applying a variance stabilizing transform to the data, the noise can be made 

approximately signal-independent. A well known variance-stabilizing transform is the 

Anscombe transform [25]. For the Poisson-distributed quantity N, the Anscombe transform is 

3

8
N N  . The resulting transformed variable has variance close to 1/4 for values of data 

mean down to about 2. In the case of hyperspectral data, the photoelectron counts are usually 

hundreds or more. With the simpler transform [26] N N , the variance is close to 1/4 for 

a data mean down to about 10, covering the relevant range of values for hyperspectral 

imaging. 

Variance-stabilizing transforms based on the square root have been extensively used in 

Astronomy. One main area of application is data compression [27–31]. Another application of 

variance-stabilizing transforms in astronomy is as a step in image restoration for Poisson 

images [32–34]. By appropriate scaling and rounding of variance-stabilized data, a 

predetermined fraction of the noise variance can be retained. Such a scheme is outlined here. 

Note that the resulting integer data can then be compressed with standard lossless techniques, 

resulting in a significant degree of data compression. Some further discussion of variance-

stabilizing data transformation is given in 5.3. 
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Following Refs. 30 and 32, a variance-stabilized representation of the hyperspectral 

image, which also takes into account dark current and read noise, is obtained from 

 
0

[ , ]
[ , ] [ , ] .C

R eff R

D i j
R i j S N i j S N

S
    (14) 

This representation is equal to the noise estimate in Eq. (12) apart from the scaling factor 

SR, which will be used to rescale the data for storage, as S does for DC above. The statistical 

distribution of the transformed data R is very close to Gaussian with variance 2 / 4RS , as can 

be easily verified by numerical tests. This is a very interesting property of the R 

representation: As opposed to radiance-linear representations, the nonlinearly transformed R 

data conform to the often-used assumption of signal-independent additive Gaussian noise. 

The R data can be readily converted to radiance and to estimates of radiance noise. 

Following Eqs. (10) and (14), 

    
2 2

0 0
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The noise expressed as radiance is 

 [ , ] [ ] [ , ] / RL i j SK i R i j S   (15) 

so that the radiance signal to noise ratio is 
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As for the DC representation, the user can reconstruct radiance and noise from the R data 

with a simple set of metadata that also give a first-order description of the sensor. 

Now consider storing the variance-stabilized data R as integers, after rounding. The 

scaling factor SR should be chosen so that the rounding error is negligible. Due to the 

nonlinear transformation, rounding error in R cannot be referred to digitization error in Draw. 

Instead, it must be compared to the photon noise. The relative noise contribution of the 

1/ 12  RMS rounding error in R, here denoted r, is 

 
 

2
21

12 2 1 2

1212 12R RR R

R R
r

S R S RS S

 
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rounding error

photon noise   
  

Thus the rounding error is independent of signal level, except for very weak signals which 

were disregarded in our choice of variance-stabilizing transform. Choosing SR=1 gives 

r=0.58. Then the RMS sum of photon noise and rounding error is 15% larger than photon 

noise alone, which may not be acceptable. Choosing SR=2 gives r=0.29 and a 4% higher 

noise, which should be tolerable in many cases: As pointed out in [31], the added error with 

SR=2 can be compensated by an 8% increase in exposure time. Expressed this way, the 

consequences of any given choice of SR can be readily assessed. The particular choice SR=2 

transforms the photon noise conveniently into a constant variance and standard deviation of 1. 

Note that as shown in [31], rounding of the nonlinearly transformed R values introduces a 

small bias in the reconstructed radiance corresponding to 1/12 photoelectron for SR=2, which 

is negligible in most cases but can easily be corrected for. 

Consider again the CCD from the example above, with full well capacity Nmax=2
16

. We 

note that with SR=1, the full-scale value of R is 2
8
 and the image data can be fitted in a 1-byte 

format. With SR=2, the data can be stored in 9 bits per sample with only a 4% degradation of 
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SNR. Thus the variance-stabilized R representation is quite efficient with respect to data 

storage and approaches the minimum data size of 7 bits given by the information capacity (5). 

4 Possible sensor-related refinements of the data representation 

4.1 Low photoelectron counts 

The addition of N0 in Eq. (14) incorporates the noise from dark current and readout so that the 

noise estimation in Eq. (15) is valid to very low signal levels. At the same time, this definition 

of R is consistent with the recommended practice to keep the zero-signal point within the data 

range [18] to be able to detect offset drift errors. The DC representation, on the other hand, is 

defined to be proportional to radiance, and the dark current term is subtracted in Eq. (9). 

When the signal is comparable to or smaller than the dark current then the subtraction of a 

mean dark current may lead to a negative output value for some samples. In many cases these 

negative values can be truncated to zero for storage in an unsigned integer format. However 

such truncation would tend to skew the data distribution in a way that is not consistent with 

the sensor physics. An alternative definition of DC would be to incorporate an offset term, for 

example N0, so that zero signal is represented by a small positive DC value. 

4.2 Large constant background level 

In some cases, image contrasts are small compared to the mean photosignal. For example, this 

is normally the case in the thermal infrared. A similar situation arises when the dark current 

contribution is large. In these cases, the values of R will vary over a small range relative to 

their mean. Then essentially the R values have a large constant offset or pedestal value Rmin, 

which is undesirable for storage in a compact format. However this offset can be subtracted 

and supplied as metadata, resulting in modified data 
minR R R   that fit in a more compact 

format. The modified data still maintain the useful property that the noise level is constant and 

known. 

4.3 Saturation 

In many cases there is a risk that some sensor elements will saturate due to strong signals, for 

example a specular reflection in the scene. In such cases, the sensor reading is only a lower 

bound on the light level. Then the data for the particular pixel and band cannot be correctly 

processed along with normal image data. Normally the raw data from a saturated sensor 

element is the value Dmax. Note that if this value is converted into any of the representations 

discussed above, it may result in an output value falling within the range of normal 

unsaturated data. Therefore the saturated light samples need to be treated specially. 

Saturated values can be flagged in a separate map of bad pixels supplied as part of the 

metadata. Alternatively, saturation can be flagged by a reserved data value. A reasonable 

choice, used in our real-time system, is to reserve the maximum data value in an integer data 

type as a saturation flag. Then the data structure is kept simple. For the DC representation in 

an n-bit format, using Cmax=2
n
-2 guarantees that the maximum value will never be used for 

normal data. 

4.4 Bad sensor elements 

In most types of photodetector arrays, a small fraction of the elements are defective in some 

way, such as excessive dark current, excessive noise, or no signal at all. In conventional 

imaging, data from these pixels are replaced by interpolating spatially between neighboring 

pixels. When the array is used for hyperspectral imaging, such interpolation may produce 

unacceptable spectral artifacts depending on the specifics of the sensor and application. 

Therefore it is desirable to flag defective pixels in the image, for example in the form of a 

reserved data value. This reserved value may be the same as the saturation flag. However a 
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separate reserved value for defective pixels will preserve information about saturation, which 

is potentially usable in the data processing. 

4.5 Known upper limit for the signal spectrum 

It can be noted that a further stage of physics-based compression is possible if the maximum 

signals of some bands are guaranteed to be below a known fraction of the saturation level. 

Then the allocated bit width can be reduced accordingly for bands with smaller signal ranges. 

An example is remote sensing with a visible and near-infrared grating-based imaging 

spectrometer with spectral properties similar to Fig. 1. Consider in addition the fact that the 

peak of solar irradiance is in the middle of the spectral range. The integration time will be set 

so as to avoid saturation in the bands with the largest photoelectron count, and then the bands 

near the ends of the spectral range will span only a small part of their possible signal range. 

5. Summary and discussion 

5.1 Noise and data processing 

The review of data compression papers in the introduction illustrates that published works on 

hyperspectral image processing for remote sensing rarely exploit noise information from basic 

sensor physics. There is no clear technical reason why such noise information is not being 

provided and used. I suspect that the situation it is partly a matter of tradition in the field, 

dating from the first generations of hyperspectral sensors. The situation is different in other 

fields of optical imaging, for example in astronomy where photon noise is taken into account 

in data compression and image processing [27–34]. In the field of thermal imaging, photon 

noise is the basis of the standard “background limit” on the signal to noise ratio [17]. 

All radiance-linear representations are in principle equivalent and share the problem that 

the noise level is signal-dependent. This has implications for algorithms containing spectral 

difference metrics. Many such metrics, such as Euclidean distance or integrated difference, 

are based on band-by-band differences between spectra. For example, image compression 

algorithms often use radiance mean square error (MSE) or similar measures of compression 

quality [6] and assume additive noise. If photon noise makes a significant contribution to the 

reconstruction error after compression, which is a desirable situation, then the radiance MSE 

will tend to be dominated by the brightest parts of the image since photon noise is largest 

there. Thus there is a risk that systematic reconstruction errors in darker parts of the image 

will not be captured by the MSE compression quality metric. Similar problems could arise in 

other types of image processing. A possible alternative metric for spectral difference could be 

the mean error or mean square error in variance-stabilized data R[i,j], which would tend to 

introduce balance between bright and dark areas. There is an obvious potential to reformulate 

existing algorithms to take advantage of square root transformed data. An important limitation 

of the variance-stabilized representation is that the image data do not conform to the 

assumptions of the often-used linear mixing model. 

5.2 Storage and compression 

It has been pointed out here that any radiance-linear representation of hyperspectral images is 

inefficient with respect to data size. In the limit of low dark current and large full well 

capacity, the data size is a factor ~2 larger than the information capacity of the sensor. When 

the data are represented as radiance, data size may increase further due to a large relative 

variation in quantum efficiency with wavelength. In comparison, the variance-stabilized R 

data can be stored in a data volume comparable to the information capacity, depending on the 

desired accuracy. In the example case used throughout the text, the raw data are 12 bits, DC 

data would require 13 bits per sample for lossless storage and radiance data would require 16 

bits. In comparison, it was shown that variance-stabilized R data could be stored in 9 bits, 

although with a small (4%) degradation of the signal to noise ratio. It is thus possible to 
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achieve a near-lossless compression on the order of 50% just by transforming the data based 

on basic measurement physics. Of course, a much higher compression level can be achieved 

by proper compression algorithms that exploit redundancies in spectral, spatial or temporal 

image information. However, it appears reasonable to say that square-root transformation 

followed by generic lossless data compression is an appropriate baseline for calculation of 

data compression ratios. 

5.3 The many virtues of the square-root transformation 

In other types of imaging, the square-root representation is well established. Its ability to 

stabilize photon noise variance is just one of the reasons why the square root transformation is 

widely used. Conventional digital photography and video employ a square-root-like 

transformation known as “gamma correction”. (See for example Refs. 35 and 36.) It is thanks 

to the gamma transformation that 8-bit precision is sufficient for digital photography. 

Historically, gamma correction originates from analog video formats, where the nonlinear 

transformation adapted the signal to the characteristics of cathode ray tubes (old TV displays). 

At the same time, the transformation equalizes the effect of additive noise over the dynamic 

range of the analog signal, just as rounding errors are equalized in a digital signal. 

Furthermore, as discussed in [35], there is an interesting coincidence between the square root 

transformed data and the human visual perception, such that the data are an approximate 

metric for perceived contrast. Finally, the square root transformation adapts the data for 

storage in a data volume comparable to the Poisson channel capacity. Thus there are several 

fundamental and coincidental reasons to say that a variance-stabilized representation is the 

natural choice for Poisson-dominated image data. Returning to hyperspectral imaging, it is 

clear that the gamma characteristic of display systems must be taken into account when 

visualizing radiance data. 

6. Conclusions 

Knowledge of physical sensor noise tends to remain unexploited in hyperspectral image 

processing. Also, representation of hyperspectral images as radiance values is inefficient with 

respect to data volume. Two alternative representations for hyperspectral images, “corrected 

raw data” DC and variance-stabilized data R have been proposed here. These representations 

facilitate the use of physical noise estimates in processing of hyperspectral data. There is an 

obvious potential in reformulating many image processing algorithms to work on variance-

stabilized data. The variance-stabilized representation also allows compact data storage 

approaching the information-theoretic limit, and is an appropriate baseline for evaluation of 

hyperspectral image data compression. If knowledge of sensor noise is not taken into account, 

there is an obvious risk that image processing results are suboptimal, and that data volumes 

are much larger than necessary. 

 

#141407 - $15.00 USD Received 19 Jan 2011; revised 2 Jun 2011; accepted 8 Jun 2011; published 22 Jun 2011
(C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS   13046




