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Abstract

Service orientation, and more recently, the notions of cloud technology that service orientation enable, are designed to
accommodate the need for flexible enterprise business processes. Through standardized interfaces, a service-oriented
architecture (SOA) should enable one to build and rebuild software systems readily and rapidly in a methodological
manner. However, certain domains have specialized architectural standards; an example in point is modelling and
simulation (M&S), for which there exist mature architectural standards, that may even have many of the characteristics
strived for in SOA. An important issue is, therefore, how to integrate specialized architectures into a wider SOA. Using
defence information systems and M&S as a case, we outline a hybrid architecture framework for specialized architectures
in an encompassing SOA. Although it may be possible to dissolve a specialized architecture into the encompassing SOA
at implementation time, we argue that it is important to be able to model the specialized architecture as an integral
intact part. We further advocate a pragmatic notion of reference architecture in terms of appropriate level of abstraction

and domain specificity to avoid pit-falls that may render architecture work unusable.
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1. Introduction

The functionality of present information systems must be
adaptable in an altogether different manner than before.
To meet rapidly changing business processes, function-
ality must be network enabled, accessible anywhere and
put together readily and rapidly to serve various needs.
The concepts of service-oriented architecture (SOA); e.g.,
[Erl, 2007] and capability-based development (CBD); e.g.,
[Danesh and Yu, 2015] explicitly seek to partition business
and IT functionality into loosely coupled, stable pieces
that constitute meaningful units at both the enterprise
level and the information-technological level.

An example in point is defence capabilities. To en-
able flexible reconfiguration of defence activities in unpre-
dictable and complex environments and to enable com-
bined multi-nation warfare across heterogeneous defence
platforms as is necessary in the North Atlantic Treaty
Organization (NATO), planning and development should
now be done in terms of capabilities (what to achieve and
perform), rather than in terms of specific assets and ma-
terial. This necessitates the appropriate definition of ca-
pabilities at both operational and IT levels. These capa-
bilities must be highly recomposable and support multiple
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dimensions of quality of service. At the IT level, capabil-
ities must be readily accessible globally from repositories
and registries in the form of secure clouds.

For all this to work, portfolios can no longer consist of
stand-alone stove-piped systems, and principles of service
orientation are pertinent: Functionality must be loosely
coupled in terms of data, processing, space and time, so
that it can be used in various contexts. For composabil-
ity and interoperability, functionality and communication
must be described in standardized formats. Then, deci-
sions have to be made on what capabilities are needed and
how functionality should be provided by what services.

There are substantial challenges in achieving service-
orientation [Ahmed and Letchmunan, 2015; Li et al., 2010].
Defence information systems portfolios, and portfolios in
other complex and heterogeneous operational domains re-
lated to crisis management, exacerbate these challenges.
The architectural challenges one faces in defence informa-
tion systems portfolios therefore highlight issues relevant
to enterprise systems portfolios in general.

Some sort of architectural coordination mechanism is
necessary for handling the enormous complexity of all as-
pects of such portfolios. So-called overarching and refer-
ence architectures are intended as standards and guidances
to ensure a common architectural basis across systems in
a portfolio to ensure interoperability.

In addition, subsystems in a portfolio might adhere
to their own specialized architecture guidelines and stan-
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dards. For example, the need for loose coupling and in-
teroperability has been recognized for some time in the
modelling and simulation (M&S) domain, as reflected in
the work of the Simulation Interoperability Standards Or-
ganization (SISO). There now exist several standards and
protocols for M&S systems; e.g., the High Level Archi-
tecture (HLA) [IEEE Standards Association, 2010a], the
Distributed Interactive Simulation (DIS) standard [IEEE
Standards Association, 2015|, and the Test and Training
Enabling Architecture (TENA) [Test Resource and Man-
agement Center, 2002]. Due to presumed and factual in-
creases in benefit/cost ratios, M&S are mandated to be an
integral part of portfolios in many domains. For defence
capabilities, they are mandated to be used in education,
operations training and rehearsal and long- and short-term
planning [NATO Modelling and Simulation Group, 2012].
Recently, frameworks for M&S analyses of critical infras-
tructure [Grogan and de Weck, 2015; Rome et al., 2014;
Tolone et al., 2009] have been developed. In other do-
mains, such as in the oil industry and construction, simu-
lations are indispensable core technologies that give indus-
trial capabilities which would otherwise not be possible.
The question then arises as to the degree of internaliz-
ing specialized architectures; e.g., for simulations, into an
encompassing SOA. Using HLA and defence portfolios as
a case, we will discuss simulations and simulation compo-
nents in terms of service orientation, and what it means for
simulations to be integral in a larger service-oriented fed-
eration of systems. From this, we will suggest answers to
the following research questions on how specialized archi-
tectures might be embedded into an encompassing SOA:

1. To what extent is it desirable and possible to pro-
mote specialized architectures as integral parts to the
encompassing architecture?

2. To what extent is it desirable and possible to dissolve
specialized architectures; hereunder,

(a) can components in a specialized architecture
rather be components in the encompassing ar-
chitecture?

(b) can the service management mechanism of the
encompassing architecture be used in place of
that of the specialized architecture?

As the main contribution, we will then suggest a hy-
brid architecture framework in line with our findings to
the above questions. The framework will have means to be
specific in terms of topology, in that it will delineate bound-
aries between sub architectures. Further it will point to a
dynamic repository of architecture artefacts that represent
domain-specific capability descriptions.

Deliberations into simulation and SOA have been un-
dertaken at the theoretical and experimental level; see e.g.,
[Wang et al., 2011, 2008; Pan et al., 2007; Dragoicea et al.,
2012; Wei and Tsai, 2014] for an overview. Our focus is on
setting the stage in terms of architecture principles. The
discussion is at the level of capabilities, and we do not dis-
cuss important performance issues such as time criticality,

connectivity and security. Further, our discussion is at the
conceptual level, and we do not provide empirical evidence
(quantitative or qualitative results) on effects of using the
architecture framework. To do so would require empirical
studies over time and is left for future work.

We start by reviewing architectural concepts in Sec-
tion 2 and then simulation environments with emphasis
on HLA in Section 3. We address the research questions
in Section 4 by discussing past research. We present the
main contribution, a hybrid architecture framework, in
Section 5, and give examples of its use in Sections 6 and
7. We conclude in Section 8.

2. Architecture

Agreeing that systems in dynamic portfolios cannot be
stand-alone stove-piped systems, but have to be designed
to interoperate, a relevant term is federation of systems;
which, in our discussion, is a system of loosely coupled
collaborating information systems. An individual infor-
mation system may consist of purely human routines; e.g.,
strategies and processes for information handling. It may
be purely technical in terms of information technology. Or
it may consist of all levels of information handling from hu-
man to technical. Usually, individual systems are designed
with the intent that their constituent parts interoperate;
i.e., work together and communicate with each other to
fulfil the system’s goals. When assembling systems into a
federation of systems it is not obvious that the systems will
interoperate well — or at all — without considerable effort.
This is because individual systems are often not designed
to interoperate with other systems; and in particular, not
designed to interoperate with a range of systems that may
not be known at the time of design. The idea of service
orientation is that systems can be designed to interoperate
with other, perhaps unknown or future, systems.

An architecture of a system or of a federation of systems
is, according to [International Organization for Standard-
ization, 2011]: “The fundamental organization of a system,
embodied in its components, their relationships to each
other and the environment, and the principles governing
its design and evolution.” Thus, an architecture provides
plans or blueprints for a system.

Architectures can be designed at various levels of ab-
straction. There is little consensus in general on the var-
ious levels of abstraction or on how to name them, but
we declare the notions that are relevant for our discussion
(Figure 1). Two notions are central: architectural build-
ing block (ABB) and architecture pattern (AP) [The Open
Group, 2011a]. ABBs are the elements that constitute
an architecture and APs are are high-level suggestions for
ways of composing ABBs into architectures.

At the very high level, an architecture ontology might
declare types of ABB and AP. For example, [The Open
Group, 2011a] declares ABB types, such as ‘(business)
process’, ‘service’, ‘repository’, ‘service container’; and AP
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Figure 1: Architecture framework. An architecture ontology provides types of architecture building block (ABB) and architecture
pattern (AP). An overarching architecture consists of specific ABBs and APs of various types, with standards for specifying ABBs
and APs. Various architecture topologies specifying system and interoperability boundaries aid in designing reference architectures
using ABBs and APs. From this, target architectures with implementation-specific systems (olive) can be designed.

types, such as ‘consumer pattern’, ‘service invocation pat-
tern’, that are pertinent for any SOA.

Next, actual ABBs and APs of the various ABB types
and AP types can be used for declaring a domain-specific
overarching architecture. The manner in which ABBs and
APs are specified might be standardized.

Then, reference architectures are designed by composing
ABBs guided by APs from the overarching architecture. In
addition, we hold that a architecture topology (or several)
should be designed at the reference architecture level to de-
lineate intended systems boundaries and the boundaries in
which interoperability standards are enforced. From a ref-
erence architecture, individual target architectures [North
Atlantic Treaty Organization, 2016 that specify imple-
mentations may be derived. There should be methods for
refining architectures at one abstraction level to the next
[The Open Group, 2011b].

The spectrum of architecture abstraction levels and such
methods are what we here refer to as an architecture frame-
work (Figure 1).

Although, the notion of ‘architecture framework’ is not
consistently defined, key points include that such frame-
works are ontology based, open and extensible [Hilliard,
2013], and that they provide “conventions, principles and
practices for the description of architectures established
within a specific domain of application and/or community
of stakeholders” [International Organization for Standard-
ization, 2011]. Various frameworks also cover different as-

pects of architecting [Garnier et al., 2013|; for example, the
NATO Architecture Framework (NAF) [North Atlantic
Treaty Organization, 2016] is a view-based description
framework for architecture and The Open Group Archi-
tecture Framework (TOGAF) [The Open Group, 2011b]
emphasizes architecture governance and the transforma-
tion of one type of architecture into another.

It should also be noted that notions of ‘overarching ar-
chitecture’, ‘reference architecture’ and ‘target architec-
ture’ differ. For example, The Open Group SOA Reference
Architecture [The Open Group, 2011a] is a generic tem-
plate with ABBs and APs that are pertinent for any SOA,
and is, in our terminology, an architecture ontology pro-
viding ABB types and AP types, rather than a reference
architecture. Moreover, there seems to be a tendency to
ignore the full spectrum of architecture abstraction; also
observed by [Cloutier et al., 2010]. In the defence domain,
the existence of NAF notwithstanding, there have been
difficulties both in elaborating what is referred to as refer-
ence architectures and commencing development of port-
folios according to reference architectures [Hannay et al.,
2013; Bloebaum et al., 2013]|. Seemingly, problems have
arisen due to the following reference architecture pitfalls:

e the conception that a reference architecture should be
all-encompassing

e the conception that a reference architecture should be
fully abstract; e.g., independent of domain, commu-
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Figure 2: Simulation architecture framework. DSEEP architecture ontology with HLA specialization as sub-types. Within HLA,
a FOM gives rise to an overarching architecture consisting of domain-specific ABBs and APs in line with the FOM, which can
be described using the BOM standard. Using these ABBs and APs, various reference architectures can be designed, from which
target architectures with implementation-specific federations (olive) can be designed. The DSEEP provides a method through

these levels of abstraction.

nity of interest and technology.

e the conception that there should be one single refer-
ence architecture

Individually, these conceptions of what a reference archi-
tecture should be might not be unreasonable. However,
we hold that their accumulated effect is to disable sensible
action and manifests a severe overloading of the notion
of ‘reference architecture’ with what should be factored
out into several levels of abstraction. Observed failures
are that reference architectures are hard to devise, since
it is unclear what exactly a reference architecture should
describe, and that architecture sketches that have been de-
vised are hard to use, because it is unclear what the inten-
tion and practical implications of a reference architecture
are meant to be. In our discussion, we will therefore use
a wide spectrum of architecture abstraction levels, and we
will promote a notion of reference architecture that is on a
more specific abstraction level than seems to be common.

3. Simulation architecture

We cast simulation architectures in the above architec-
ture framework. The Distributed Simulation Engineering
and Execution Process (DSEEP) [IEEE Standards Associ-
ation, 2010b] is a methodology for developing (and utiliz-
ing) distributed simulation systems; see [Tolk, 2012b] for
an overview. The DSEEP implies an architecture ontology
with three main ABB types; so-called Member Application,
Simulation Data Exchange Model (SDEM) and Simulation

Environment. Member applications are components serv-
ing defined roles in a simulation such as executing simu-
lation assets or utility programs such as data loggers or
visualization tools. Member applications exchange infor-
mation declared in a SDEM. A named set of member ap-
plications along with the SDEM and a set of agreements
constitute a simulation environment. The DSEEP comes
with overlays for HLA, DIS and TENA (Section 1) that
specialize the DSEEP. NATO leverages HLA, and we will
therefore elaborate HLA for our discussion.

The M&S community has been at the forefront with re-
gards to interoperability due to explicit demands on reuse
and composability in complex simulation systems. The
High Level Architecture (HLA) [IEEE Standards Associ-
ation, 2010a] is a design, development, and runtime stan-
dard for distributed simulation systems [Petty and Gus-
tavson, 2012; Kuhl et al., 1999]. It enables viable practices
for loose coupling and interoperability.

HLA specializes the ABB type ‘Member Application’
to Federate, ‘SDEM’ to Federation Object Model (FOM)
and ‘Simulation Environment’ to HLA Federation, see Fig-
ure 2. In HLA, information exchange according to a given
FOM is coordinated by a runtime infrastructure (RTT)
which also does advanced time management. HLA pre-
scribes a publish /subscribe protocol: federates publish ob-
ject attributes and interactions between attributes, and
federates may subscribe to updates of published attributes
and interactions. The RTI brokers these messages. Feder-
ates may also query the RTT on-the-spot for updates.

For the defence domain, several overarching FOMs exist



which set out to declare what is needed in various defence
simulation scenarios. Of special interest is the Realtime
Platform Reference Federation Object Model (RPR-FOM)
and adjoining guide, the Guidance, Rationale & Interop-
erability Modalities (GRIM) [Simulation Interoperability
Standards Organization, 2015b,a]. The RPR-FOM de-
clares a range of defence entities and interactions between
them which are relevant for simulations at the weapons
platform level. It is the result of data model develop-
ment under the Distributed Interactive Simulation (DIS)
standard [IEEE Standards Association, 2015] (whose ar-
chitecture is a bus which distributes data between simula-
tor components in a standard format, Protocol Data Units
(PDU), without the filtering (e.g., publish/subscribe) and
timing control of which HLA is capable [Tolk, 2012c]).
Other overarching FOMs exist; e.g., the NATO Education
and Training Network (NETN) FOM [NATO Research
and Technology Organisation, 2012].

In our framework, a FOM gives rise to an overarching
architecture for a given domain. The ABBs of the over-
arching architecture are a collection of possible federates
relating to that FOM and an RTI. The APs describe inter-
actions between such federates. The Base Object Model
(BOM) standard [Simulation Interoperability Standards
Organization, 2006] for defining abstract object models of
entities and interactions in a simulation can be used to
specify ABBs and APs.

For designing reference and target architecture, the
HLA’s Object Model Template (OMT) describes how to
declare the various object models in HLA federations: In
addition to a FOM for the federation, each individual fed-
erate has a Simulation Object Model (SOM) associated to
it which declares the federate’s contribution to the shared
state space, and the RTI is associated with a Manage-
ment Object Model (MOM). Further, the Federation Engi-
neering Agreements Template (FEAT) [Simulation Inter-
operability Standards Organization, 2013] describes how
to write a Federation Agreement Document (FAD). While
a FOM ensures a degree of syntactic interoperability, a
FAD ensures a degree of semantic interoperability.

Note that when model-centric development becomes ma-
ture in the simulation engineering community, simulation
protocol-independent architectures can be developed in a
standard manner, and the choice of using HLA, DIS or
TENA (or other protocols and standards) can be delayed
to the reference architecture or target architecture stage.

4. Simulation environments and service orienta-
tion: past research

We will start to address Research Questions 1 and 2 by
reviewing past research on loose coupling and interoper-
ability for simulation environments. This pertains to sim-
ulation environments as parts in a larger federation as well
as member applications as parts in a simulation environ-
ment. We will form the discussion around central themes
of service-oriented architecture.

search
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Figure 3: SOA Triangle (adapted from [Erl, 2007]).

4.1. Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural
systems design and run-time approach which promotes ab-
straction, loose coupling, reusability, composability and
discovery [Erl, 2007].  In use, SOA has three main roles:
the Service Provider, the Service Consumer and the Ser-
vice Registrar; see Figure 3.

A service is declared by means of an implementation-
independent description consisting of a standardized in-
terface to ensure a degree of syntactic interoperability and
a standardized contract to ensure a degree of semantic in-
teroperability [The Open Group, 2014]. Descriptions also
specify the standardized data exchange formats that are
used for consuming a service.

At the overarching and reference architecture levels of
our framework, descriptions are technology and implemen-
tation independent; whereas in target architecture, specific
technology may be used for descriptions; e.g., Web Services
Description Language (WSDL) [World Wide Web Consor-
tium, 2007] for Big Web Services (WS*) [World Wide Web
Consortium, 2004], or Web Application Description Lan-
guage (WADL) [World Wide Web Consortium, 2009] for
Representational State Transfer (REST) style technology
[Fielding and Taylor, 2002]. Although a choice has been
made for SOA technology at this point, services as such
are still implementation independent (see below). Current
practice around popular technologies (WebSocket [Fette
and Melnikov, 2011], Advanced Message Queue Protocol
(AMQP) [Organization for the Advancement of Structured
Information Standards, 2012], JavaScript Object Notation

C||ent to Registrar Serwce
m Serwce
CI|ent Serwce

Figure 4: Broker technology.
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Figure 5: Gateways (wrappers) are used to service-enable soft-
ware which was not designed service oriented at the outset.

(JSON) [Ecma International, 2013], REST) at the target
architecture level usually avoid or omit descriptions. In
our framework, it is essential that all services have de-
scriptions at the reference architecture level, at least.

In our framework, services exist on the level of capa-
bilities; i.e., they are abstract in the sense that they per-
sist independently of implementation and, ideally, context.
Therefore, a service is different from a service provider,
since the latter is a specific configuration of resources
in a given situation that implements and offers the ser-
vice. A service provider may provide several services
and a service may be provided by several providers [The
Open Group, 2014|. Likewise, a client is a persistent and
implementation-independent user of a service that relates
to the service description. A service consumer is an actual
configuration of resources in a given situation that uses
functionality in the service provider.

A service provider registers a service it wishes to provide
to the community with a registrar. The registrar deposits
the description in a repository and the concrete informa-
tion for run-time binding in a registry. A client consults
the registrar for descriptions from the repository to pre-
pare for service consumption, and the consumer consults
the registrar for binding information from the registry to
an appropriate provider.

Types of interaction are mainly request/response (syn-
chronous) and publish/subscribe (asynchronous). Bro-
ker technology facilitates publish/subscribe, in that a
consumer relates to a broker which administers pub-
lish /subscribe requests; see Figure 4.

The ever-present need to integrate legacy software
haunts SOA. A legacy system can become a service
provider by exposing a part of its functionality through a
gateway (wrapper) which translates communication from
the software system to the standard communication used
in the SOA, and likewise for a consumer; see Figure 5.

4.2. Simulation environments as parts in federations

In the defence domain, there has, for some time, been a de-
sire to interoperate operational systems with simulations.
In line with strategic decisions, this should be done as part
of a service-oriented portfolio [Hannay et al., 2016].
Somewhat independently of concerted SOA initiatives,
research in the defence simulation and operational systems
communities has strived for an important aspect of ser-
vice orientation; namely standardized data exchange for-
mats, but without emphasis on standardized descriptions

as a whole. Many command and control (C2) systems for
planning, commanding and monitoring military operations
support XML-based web technologies for communicating
their data [Tolk, 2012a,d]. Moreover, data models such as
the Joint Consultation, Command and Control Informa-
tion Exchange Data Model (JC3IEDM) (NATO standard
STANAG 5525) and its successor, the Multilateral Inter-
operability Program Information Model (MIM) [Multilat-
eral Interoperability Programme, 2015], specify the mini-
mum set of data that needs to be exchanged in coalition
or multinational operations. Systems that communicate
in terms of these common data structures thus gain a level
of interoperability.

For communication with simulation environments, the
Coalition Battle Management Language (C-BML) [Simu-
lation Interoperability Standards Organization, 2014b] is
a formalized language for expressing a commander’s plans,
orders and reports across C2 systems, simulation systems
and autonomous systems. The Military Scenario Defini-
tion Language (MSDL) [Simulation Interoperability Stan-
dards Organization, 2008] is a standard for describing sce-
narios used for initializing systems. Both C-BML and
MSDL are XML-based and relate to JC3IEDM.

These standards make it possible to achieve interoper-
ability between C2 systems and simulation systems. Ef-
forts toward further interoperability between C2 systems
and simulation systems are consolidated in a C2SIM ini-
tiative [Heflner et al., 2014]. A number of system demon-
strators have been developed to explore the concept.

Figure 6 outlines a demonstration [Pullen et al., 2012],
where inter-system collaboration was achieved using stan-
dards such as MSDL, C-BML, DIS and JC3IEDM. A
Scripted BML (SBML) server coordinated the MSDL ini-
tialization and the exchange of C-BML orders and reports.
Legacy systems were “standards enabled” using wrappers.

For federations like this to become truly service oriented,
however, the involved systems must become providers and
consumers of services; that is, C2 and simulation systems
must expose their functionality as services in terms of stan-
dardized service descriptions (here on C-BML and DIS)
that are deployed through a registrar (Section 4.1). At
the abstract architecture level, these services should cor-
respond to appropriate ABBs in overarching and reference
architectures. Although existing federations may use tech-
nology associated with service orientation, such as WS*
REST, etc., this is in itself not sufficient for high SOA
maturity [The Open Group, 2009].

It has been argued that “SOA in practice” often does
not include the registrar and only involves the lower part
of the SOA triangle [Michlmayr et al., 2007, 2010]. This is
certainly true for many federations such as the one above.
The deployment of training federations is usually static;
i.e., trainees, C2 systems and simulation systems are at
distributed, but pre-planned, locations. However, it is de-
sirable that trainees are able to complete training locally
in their natural environment. This creates the need for
composing training federations dynamically.
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Figure 6: Demonstration of inter-system collaboration by stan-
dards between C2 and simulation systems [Pullen et al., 2012].
Systems are standards enabled using wrapper gateways (GW).
Target architecture with concrete implementations.

Even more flexibility is needed in the case of simulation
in support of operations, where the warfighter uses simula-
tion, e.g., to plan an operation [Bruvoll et al., 2015; Han-
nay et al., 2015]. In this case, simulation systems would
preferably be located on mobile platforms. Then, services
must be loosely coupled with respect to location and time;
i.e., the physical location of available service providers —
which may vary over time — must be transparent to con-
sumers. Further, providers must provide varying levels of
quality of service to cater for mobile units that operate in
and out of disadvantaged grids [Johnsen et al., 2012]. In
other words, when moving the use of simulation closer to
the warfighter or to operations, there will be a need for
the registrar’s discovery mechanisms in order to take the
full advantage of service orientation.

The meaning of “dynamic” and “flexible” here is lim-
ited by current technology. Many of SOA’s ideas are not
possible to implement elegantly at present. It is therefore
important to be aware of the following distinction: design-
time discovery and runtime discovery. Today, service dis-
covery is mostly done manually at design time [Erl, 2007];
in contrast to the true loose coupling ideal. For example,
a systems designer may consult a registrar to determine
whether an appropriate service implementation exists or
needs to be developed. Runtime discovery is limited to
consumers being able to choose among services or switch
between service implementations. This limited runtime
discovery is still important, since it provides loose coupling
w.r.t. platform, location and time and abstracts away from
method-level specificity. However, run-time discovery in
the sense of a consumer checking at runtime for entirely
new functionality would require semantic interoperability
and more [Tolk, 2012¢|; technologies which are in their in-
fancy. Currently, more static variants of the ideal scenario

are possible. For example, a consumer may probe for ser-
vices, and bind to services at runtime, provided that the
consumer has been sufficiently prepared at design-time for
consuming those services. Thus, run-time service discov-
ery is more akin to a service availability check, where the
actual services are known at design time. See [Lund et al.,
2012] for an example, where a user application gives the
option to invoke available services on the fly.

In another demonstration [Allen and Schroeder, 2011;
Coolahan and Allen, 2012; Allen et al., 2010], a proto-
type interoperability layer was developed to combine the
Army Joint Land Component Constructive Training Capa-
bility (JLCCTC) Multi-Resolution Federation (MRF) and
the JLCCTC Entity Resolution Federation (ERF) training
system. One federate joined each federation; Joint Con-
flict and Tactical Simulation (JCATS) in MRF and Joint
Non-Kinetic Effects Model (JNEM) in ERF.

Both MRF and ERF are HLA federations. Their stated
value to the demonstration is that they have widely differ-
ent FOMs and time management, and therefore challenge
interoperability [Allen and Schroeder, 2011]: ERF uses an
entity-centric DIS-based data model, while MRF uses an
aggregate unit-centric data model based on the Aggregate
Level Simulation Protocol (ALSP) [Wilson and Weatherly,
1994]. The MRF is time managed, where all simulations
coordinate the advancement of simulation time. The ERF
runs in real-time.

To offer coordination across these disparate federations,
a service was developed for centralized monitoring to pro-
vide the status of connected federations, and a second
service was developed for situational awareness providing
ground truth for all entities within a geographic bounding
box (defined in Universal Core (UCore); a XML format to
share intelligence across U.S. government systems). In the
demonstration, the situational awareness feed was used to
populate a Common Operating Picture (COP) displayed
inside the Google Earth environment.

To support these services, a set of common data abstrac-
tion services where developed to maintain the minimal set
of data required to share object state across entities [Allen
and Schroeder, 2011]|. Also, development of an enumer-
ations translation service was under way. Enumerations
pertain to entity identity and representation, and prob-
lems arise when different systems use different enumera-
tion schemes. The service is to provide a set of common
methods for data producers and consumers to translate
from native representations to common data representa-
tions. In this manner, common functionality for gateways
may be factored out and offered as services.

This demonstration illustrates inter-simulation system
coordination management offered as services; see [Drake
and Morse, 2012; Drake et al., 2011] for further elabora-
tion. In this demonstration, the concept of ‘service’ was
more explicitly present than in the former demonstration.

In summary, for simulation environments as parts in fed-
erations:
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Figure 7: Demonstration of inter-system interoperability in-
volving two HLA federations, common consumer services and
common data abstraction services [Allen and Schroeder, 2011].
Gateways (standing rectangles) enable the HLA federations to
participate in the overall system. More detailed view of gate-
way architecture in lower part of figure: The RTI is imple-
mented as a Central Runtime Component (CRC) and Local
Runtime Component (LRC), and various gateway components
consume the services. Target architecture with concrete imple-
mentations (olive), with services represented by descriptions
(orange).

e Existing data exchange standards enable simulation
environments to participate intact in a wider federa-
tion with C2 systems.

e Components are often not defined as service providers
or consumers that associate to service descriptions.

e Common coordination and gateway services can facil-
itate interoperability between simulation systems.

e Discovery has not been used in existing C2-simulation
federations, but there are obvious operational needs
for it that should trigger the development of registrar-
related functionality.

4.8. Member applications as parts in a simulation envi-
ronment

We now discuss whether member applications in a simu-
lation environment can be seen as service providers. We
consider two aspects: that of services within a simulation
environment seen as a SOA, and that of services that give
functionality across simulation environments.

4.8.1. Services within a given simulation environment
For the first aspect, what type of loose coupling do mem-
ber applications in a simulation environment enjoy? In
HLA, federates communicate with the RTT by means of
APIs for Java and C++, or a Web Service API which
exposes RTT functionality as web services within the fed-
eration [Moller and Lof, 2006; Moller and Dahlin, 2006;
Moller et al., 2008]. The emerging WebLVC standard [Gra-
nowetter, 2013; Simulation Interoperability Standards Or-
ganization, 2014a| enables HLA federates to join a hosted
simulation federation in a cloud via web applications.

The RTT is the central point where federates can create,
discover and join federations. Thus, in a HLA federation,
the RTI middleware plays a role similar to the registrar
(Section 4.1). There is therefore loose binding in that fed-
erates may join or leave a federation during runtime and
in that federates are not aware of other federates in the
federation; all they need to do is to publish and subscribe
to information. The RTT plays a crucial role in this.

Further, the RTT functions as a state management defer-
ral mechanism, since shared state management has been
delegated away from the federates to the RTI [Erl, 2007].
This gives the federates a high level of autonomy with
respect to other federates, but a heavy dependency of fed-
erates on the RTI. Thus, the RTI can be seen as providing
a utility service which intentionally violates the SOA ideal
of statelessness so that other services may enjoy their level
of state processing deferral [Erl, 2007]. The RTT is rela-
tively active, since it is capable of administering compli-
cated time management schemes and engages a “chatty”
mode of communication.

Thus, there are technical mechanisms prescribed in HLA
that support service orientation. But for federates to be
viewed as service providers within a HLA federation, they
must have service descriptions. In a sense, the FAD and
the FOM (Section 3) holds the union of descriptions, and
individual SOMs hold syntactic descriptions for federates.

So, a simulation environment can be seen as a SOA with
certain caveats. Although there is a Web Service API in
HLA, this is for exposing RTT functionality as services, not
for federates to expose their functionality as services. Fur-
ther, only publish/subscribe through a broker — the RTI
— is possible at present. Although the publish subscribe
concept in HLA is an effective way to obtain shared state
in the federation, there are cases where a federate may re-
quest information that is only relevant for that federate
at a certain point of time. One example is information
on the visibility of an entity from given points in the ter-
rain that could be given by a line-of-sight service. This
information should be given by request/response, rather
than published to the entire federation. Ongoing work on
the next version of the HLA standard [Simulation Inter-
operability Standards Organization, 2016] is looking into
extending to other types of interaction.

In summary:

e HLA enables loose coupling to a degree that member



applications (HLA federates) may be viewed as service
providers relative to a given FOM and FAD.

e HLA’s RTI can be viewed as providing service discov-
ery and state deferral.

4.8.2. Services across simulation environments

For the second aspect, [Gustavson et al., 2005] remark that
the reliance on a FOM precludes loose binding in the SOA
sense. The data types of information shared in a simula-
tion environment must be known at design time, which is
a tight coupling that contrasts with SOA. Although fed-
erates do not manage the shared state, they nonetheless
have to relate to relevant portions of the shared state vari-
ables. Thus, a federate cannot simply join a federation
operating on a different FOM.

The idea of a HLA federate as a service provider to ar-
bitrary simulation environments is therefore not straight-
forward, and in light of the above discussion, it does not
help that one can use web technology to join a HLA fed-
erate to a HLA federation. For a federate to function as
a service provider across FOMs, it must be able to digest
and adapt to various FOMs [Gustavson et al., 2005] which
seems unrealistic; particularly in light of the complexity of
many FOMs in use.

However, for implementation-independent architecture,
it is possible to write descriptions for services that are
independent of data model. At the overarching level of
abstraction, these should, for HLA, be FOM independent.
In a concrete implementation, these services are provided
by member applications that observe a given FOM.

Indeed, one may consider the following approach [Moller
et al., 2007; Sisson et al., 2006; Chase and Gustavson, 2005;
Chase et al., 2006]: The Base Object Model (BOM) tem-
plate (Section 3) describes how to model objects and in-
teractions between them. In other words, BOMs are a
way to provide interface information — in XML style, and
there are guidelines on how to aggregate BOMs and on how
to translate BOMs to a FOM, using Extensible Stylesheet
Language Transformations (XSLT'). One may therefore use
BOMs as simulation service descriptions, and when com-
bining services, the aggregated BOMs can be automati-
cally translated to the appropriate FOM necessary for the
resulting federation to run. With modular FOMs, one can
also extend the federation at runtime. In this manner, the
declaration for shared state (the FOM) can be constructed
during composition time using abstract simulation service
descriptions.

Figure 8 illustrates two ideas along this line of thought.
On the left hand side of the figure, is an example from
[Moller et al., 2007; Gustavson et al., 2005] where the
RPR-FOM is used as the basis for defining BOMs. These
BOMs model states and behaviour (interaction patterns)
on an abstract level independent of the RPR-FOM, and
thus function as abstract service descriptions. BOMs can
be automatically translated into modular FOMs using a
XSLT service, generating the FOM du jour on the fly;

XSLT
BOM2FOM
Service

XSLT BOM
Aggregation

Service

>

‘ Modular FOM | ‘

|

Figure 8: BOMs as service descriptions for simulation services.
The RPR-FOM used as the basis for defining BOMs (orange
descriptions left-hand side of figure) [Moller et al., 2007; Gus-
tavson et al., 2005] that give rise to FOM modules via a XSLT
service (violet description). Entity level BOMs (orange descrip-
tions right-hand side of figure) (de-)aggregated via a XSLT ser-
vice (violet description) [Sisson et al., 2006].

which then accommodates federates providing the services
specified in the BOMs. On the right-hand side of the fig-
ure, is an example from [Sisson et al., 2006], where entity-
level BOMs are defined and aggregated and de-aggregated
using a XSLT service. Entity BOMs are abstract spec-
ifications for entities as a service, and composing entity
services yields a new service specified by the correspond-
ing BOM aggregation; which can then be automatically
translated to a FOM module to join the FOM.

Composing components at this level of granularity faces
the challenges of component-based software engineering
in full; particularly the verification and validation of the
composition based on the descriptions of the components.
For modelling and simulation, additional issues apply; see
[Tolk, 2012¢]. At lower levels of granularity, components
act in detail on the same state space which complicates
things further [Tolk and Mittal, 2014]. The complication
depends on the extent to which the components inter-
act with each other. In the case of the aggregation/de-
aggregation example shown in Figure 8, the entities may
simply be aggregated so as to represent one entity with-
out components interacting; e.g., for computational econ-
omy. When the aggregate has reached its destination,
say, the entities may be deaggregated. A BOM Aggrega-
tion Framework (BAF) with a BOM Aggregation Support
Server (BASS) has been developed which provides this
type of aggregation/deaggregation functionality as run-
time services [Sisson et al., 2006; Gustavson et al., 2005].

On the other hand, if components are to interact, then
demands on interoperability and verification in shared
state mount the scene. It is argued that the BOM tem-
plate is not sufficient for component matching and that
it gives weak support for verification and validation of a



composition; e.g, [Mahmood et al., 2011]. To amend these

issues, semantic enhancements of BOMs have been devel-

oped [Mojtahed et al., 2010, 2008; Moradi et al., 2007],

and methods for verifying the functionality of composi-

tions have been researched [Mahmood et al., 2011, 2012].
In summary:

e For implementation-independent architecture, ser-
vices that offer simulations can be described (using
BOMs) independent of FOM.

e For implementation, relevant BOMs can be used to
generate a FOM dynamically (and FAD — Section 3),
so that, in theory, simulation environments can be
composed from loosely coupled services.

Notice that these points imply that descriptions of ser-
vices that deliver simulations (e.g., BOMs) should be FOM
independent. This, in turn, implies that FOMSs are shifted
toward the more specific parts of the architecture frame-
work, compared to the framework in Figure 2. We will
discuss this in the next section.

4.4. Concluding observations

It is evident that principles of service-orientation are per-
tinent for simulation environments; both for the environ-
ment seen from the outside (Section 4.2) and for environ-
ments internally (Section 4.3). We answer our research
questions as follows:

1. It is desirable and possible to promote specialized ar-
chitectures as integral parts to an encompassing SOA. For
defence simulation, early efforts have demonstrated a need
for, and the feasibility of, federating simulation environ-
ments with defence systems. There are concerted efforts
in the M&S and C2 communities to do this better, since
operational personnel must be able to access M&S func-
tionality through their regular systems used in operations.
On the one hand, it is beneficial to view a simulation en-
vironment as a black box offering simulation as a service
to, e.g., C2 systems. On the other hand, it is beneficial to
view simulation environments as SOAs operating on highly
specialized rules optimized for simulation purposes.

2. Therefore, while designing architecture at the
implementation-independent level, it must be possible to
model specialized architectures as integral parts of the
whole, rather than dissolving the specialized architecture
into the encompassing architecture.

2(a). However, the feasibility and usefulness of factoring
out common functionality as services for use across simu-
lation systems (e.g., HLA federations) means that the sys-
tem boundaries of what is included in a “simulation archi-
tecture” become less clear. It is necessary to cater for var-
ious views on whether these services are part of a special-
ized simulation architecture or part of the encompassing
federation. This becomes even more pertinent when spec-
ifying simulation services in a SDEM-independent manner
by, e.g., BOMs.
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2(b). Certain elements of standard service-oriented tech-
nology are usable and useful to enhance the coordina-
tion mechanisms (e.g., the RTI) in simulation architec-
tures. For example it is useful and possible to factor out
common gateway and coordination functionality for in-
tegrating simulation environments running under differ-
ing SDEMs and time management schemes. It is also
useful and possible to provide entity aggregation and de-
aggregation as a service beyond the standard capabilities.
Features of simulation middleware are definable in stan-
dard service-oriented terminology; for example, the RTI
can be seen as state-deferral service relieving HLA fed-
erates from keeping track of the total state of the HLA
federation. However, the RTI is finely tuned to the de-
mands and performance criteria of simulations. Rather
than attempting to replace it by standard middleware, its
abstract specification — in the form of ABBs and APs —
should be available in the overarching architecture. Then,
functionality for combining and coordinating simulations
can be architected, and then implemented as one finds fit.

5. Hybrid architecture framework

In light of the preceding discussion, we propose a hybrid
architecture which caters for integrating specialized sub-
architectures in an encompassing SOA. More specifically,
we will instantiate the architecture framework sketched in
Figure 1 into a hybrid-architecture framework.

5.1. Integrating architecture frameworks

Somehow, we want to integrate the simulation architecture
framework in Section 3 into a larger architecture frame-
work for SOA. One approach would be to start with the
two architecture ontologies given by The Open Group SOA
Reference Architecture (Section 2) and the DSEEP and to
coalesce the resulting frameworks. However, on the one
hand, although we do use the central concepts of ABB and
AP from The Open Group SOA Reference Architecture,
the entire ontology is extremely general and comprehen-
sive so as to cover everything a SOA needs. On the other
hand, the DSEEP ABBs are not service oriented.

Our solution is to use a capability taxonomy as a com-
mon modifier for both angles, in the role of both an archi-
tecture ontology and overarching architecture. We exem-
plify with a particular taxonomy, but the ideas are valid
for any capability taxonomy that holds ABBs and APs for
the domain(s) of interest.

5.2. The C8 Taxonomy

To support the transition to a capability-based and
service-oriented portfolio, NATO has developed the Con-
sultation, Command and Control (C3) Taxonomy [NATO
Communications and Information Agency, 2016]; see Fig-
ure 9 for a high-level view. C3 encompasses military man-
agement capabilities, but these capabilities are also rel-
evant for civilian authorities that handle crises, such as
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Figure 9: C3 Taxonomy — top-level view [NATO Communications and Information Agency, 2016]

emergency health authorities, police, fire brigades, cus-
toms, etc. Many of the management capabilities embody
principles which are central in organization and manage-
ment in any kind of business.

The taxonomy enables the defence community to sort
requirements and activities into capabilities. It explic-
itly includes, in the same picture, the operational context
(Operational Context frame) and the IT context (Communication
and Information Systems (CIS) Capabilities frame). The Operational
Context is layered into Capability Hierarchy, Codes and Statements
which is a mapping out of operational capabilities together
with high-level requirements describing what the capabil-
ities are, or should be. The operational capabilities are
supported by the two layers below; Business Processes and
Information Products.

The Communication and Information Systems (CIS) Capabilities
present themselves to the end user in the form of User-Facing
Capabilities geared toward User Applications for specific defence
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domains (air, land, maritime, joint, etc.) and communi-
ties of interest (M&S, environment, missile defence, etc.).
Below this layer are various layers of Back-End Capabilities,
which may be used to support the user-facing capabili-
ties. The Back End Capabilities are layered into Community of
Interest (COI) Services, subdivided into COI-Specific Services and
the more generic COI-Enabling Services. The COI Services are
supported by Core Services and Communication Services, both of
which provide generic infrastructure services.

Two cross-cutting concerns are defined in the taxonomy.
The CIS Security grouping holds functionality for safety and
security. The Service Management and Control (SMC) grouping
holds functionality for managing and federating a SOA,
such as service discovery, mediation and quality of service
management.

Figure 10 shows a closer detail of the taxonomy for CIS
capabilities; which will be our focus. For example, M&S
is explicitly represented at the User Applications, COI-Specific
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Figure 10: C3 Taxonomy (detail of CIS Capabilities) [NATO Communications and Information Agency, 2016]

Services and COl-Enabling Services levels. Each category (oval
box) represents a division into capabilities and is further
divided into sub-categories; i.e, sub-capabilities. At the
leafs of these capability trees, one finds individual opera-
tional processes (under Operational Capabilities), user applica-
tions (under User-Facing Capabilities) and services (under Back-
End Capabilities). For example, the M&S Enabling Services have
sub-capabilities Battlespace Simulation Services, Radio Simulation
Services, Ground Truth Battlespace Objects Services and Ground Truth
Battlespace Events Services that divide M&S functionality into
meaningful groups of services. The taxonomy is interfaced
by a semantic wiki which allows one to declare capabilities
and to describe them in terms of abstract implementation-
independent requirements.

The taxonomy’s high-level layers (Operational Capabilities,
User-Facing Capabilities, Back-End Capabilities) constitute ABB
types and the C3 Taxonomy is thereby an architecture on-
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tology in terms of Figure 1. Further, the capabilities at
various levels of detail and refinement down to processes,
applications and services constitute C3 ABBs of the vari-
ous types. In the wiki, one also finds APs that show how
the C3 ABBs are intended to interoperate. Thus, the tax-
onomy also plays the role of an overarching architecture
for the C3 domain. More specifically, the taxonomy can
be used as repository of ABBs and APs that the defence
communities can build and refine over time.

In the following, we will use colour coding in figures
according to the C3 Taxonomy. Incidently, we used the
colours in Figures 7 and 8 already.

5.8. A service-oriented repository

For the hybrid architecture framework, the C3 Taxonomy
(or a similar taxonomy) can be use as a repository for
ABBs and APs for both the simulation environment and



the encompassing SOA. This gives a uniform framework
for defence portfolio management and development. As
argued in [Hannay et al., 2016], this is important for be-
ing able to coordinate and prioritize smaller development
projects within a portfolio, and in particular, to facilitate
the coordinated integration of M&S — and other special-
ized development efforts — within a larger portfolio.

Using a capability taxonomy as a repository for ABBs
and APs also means that the most dynamic part of the
architecture framework is factored out. It is the respon-
sibility of the domain community as a whole, rather than
just the architects, to keep such as taxonomy updated in
line with the evolving understanding of capabilities.

As a service-oriented repository, the C3 Taxonomy
contains ABBs that should persist over various im-
plementations, over time and over various contexts of
use. Such ABBs only persist in terms of their abstract
implementation-independent descriptions; analogously to
what we said for services (Section 4.1). As argued in [Han-
nay et al., 2016], the C3 Taxonomy should be populated
with these descriptions — or more extensively, with require-
ments at the degrees of detail and refinement correspond-
ing to the structure of the taxonomy. Thus, we here speak
of ABBs in terms of their descriptions. A C3 Taxonomy
ABB of the type User-Application or COI Service, for instance,
is an implementation-independent description, not a piece
of software that provides that service.

For simulation environments to be service-oriented, this
means two things. In general, member applications should
be represented by their descriptions, namely BOMs. Tak-
ing the step further, since member applications are pieces
of software they should be seen as service providers (Sec-
tion 4.1) and the BOMs of interest are those that describe
these services, not the member applications as such. Fur-
thermore, these BOMs can be deposited in the C3 Taxon-
omy along with other descriptions for the larger SOA.

5.4. The hybrid topology

With a common architecture ontology and a common over-
arching architecture provided by the C3 Taxonomy, the
main enforcer of a hybrid structure becomes the topol-
ogy element at the reference architecture level. We ex-
emplify with an HLA topology, but other topologies are
of course, possible; e.g., a more general simulation envi-
ronment topology, another simulation standard/protocol
topology; e.g., for DIS or TENA, or a topology that inte-
grates multiple simulation architectures as specified in the
DSEEP multi-architecture overlay (DMAO) [IEEE Stan-
dards Association, 2013]. This hybrid approach is applica-
ble to specialized architectures other than for simulation,
and topologies for those approaches can then be provided.

Figure 11 illustrates the hybrid architecture framework
with the C3 taxonomy for simulation environments spe-
cialized to HLA. The upper-level structure of the C3 Tax-
onomy (User-Facing Applications, COI-Services, Core Services) is an
architecture ontology, while the deeper more detailed and
refined levels amount to an overarching architecture and
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functions as a repository for C3 ABBs and APs. These
ABBs are abstract descriptions of user applications and
services. Here, NAF (Section 2), or some other descrip-
tion framework, is used as a generic standard for ABBs and
APs. For the specialized architecture capabilities, BOMs
(Section 4.3) expressed in NAF diagrams is used for ABBs
and APs.

Then, hybrid architecture topologies, here for HLA sim-
ulation environments, enforce boundaries for specialized
architectures in an encompassing SOA. The topology de-
lineates areas of interoperability with special emphasis on
the specialized architecture. ABBs and APs are used to
design reference hybrid architectures and hybrid target ar-
chitectures.

Although we exemplify the hybrid architecture frame-
work with a HLA simulation environment, the framework
can be used for any specialized federation within an encom-
passing service-oriented federation. In general, the follow-
ing three principles apply:

1. Service-oriented specialized federations: Federations
adhering to a specialized architecture are compo-
nents in a wider service-oriented federation adhering
to a different architecture. Designated components
within the specialized federation expose the federa-
tion’s functionality as services and/or user applica-
tions through standardized service and user applica-
tion descriptions, and consume services from the en-
compassing federation by the same standards.

2. Service-oriented specialized components: Components
in specialized federations are seen as service providers
internally to the specialized federation if the design
principles of the specialized federation have sufficient
service-oriented features for declaring service descrip-
tions and for ensuring loose coupling in the SOA sense.

3. General service orientation: All components — both
within the specialized federation and with respect to
the encompassing federation — can consume services
ad lib in the encompassing federation by means of
standards that enable service orientation.

The concept of providing the entire specialized federa-
tion as a service is encompassed by the above. Providing
large pieces of stateful functionality that persist for longer
sections of time goes beyond the “micro services” style of
request-response and publish-subscribe as perhaps com-
monly associated with SOA, but is, all the same, supported
by the hybrid reference architecture. The provision of fed-
erations as a service (FaaS) in this way enters the realm of
cloud computing and gives the associated possibilities for
deployment in cloud environments.

6. Simulation Support for Operations Planning

We will now give a defining example of how one might use
the hybrid architecture framework sketched in Figure 11.
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6.1. Topology

For this example, we declare a topology for HLA feder-
ations in a C2SIM encompassing environment; see Fig-
ure 12. The topology states that the MSDL and C-BML
standards (Section 4.2) are to be used for interoperability
between C2 systems (which commanders use to monitor
and control operations) and simulations, and that HLA
and RPR-FOM standards are to be used for simulation
systems. Further, the NATO Interoperability Standards
and Profiles (NISP) document [NATO Consultation, Com-
mand and Control Board, 2014] should be consulted for
interoperability standards for COI and Core services.

C2 systems offer user-facing capabilities by their be-
ing user applications. Descriptions for these would re-
side in the appropriate C3 Taxonomy User-Applications cate-
gories. Although existing systems implementing these de-

scriptions may be obese and stove piped, the descriptions
can be used subsequently to develop thin clients that of-
fer the same, or better, user-facing capabilities consuming
services in the layers below, more in line with SOA.

It further states that the HLA federation is exclusively
that which observes the HLA protocol. This may include
federates, such as gateways, that interoperate with other
standards, but does not include components that do not re-
late to HLA in the encompassing federation. For example,
a MSDL/CBML gateway that enables C2 systems to inter-
operate with a HLA federation is part of the federation,
but the C2 system is not; unless is connects directly to
HLA. This is somewhat in line with [Heffner et al., 2014].
However, this relates to a general ongoing discussion on
what a “simulation environment” as specified in DSEEP
and the FEAT should encompass, and there are other
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views than that of our example. For instance, the NATO
M&S task group MSG-136 “M&S as a Service (MSaaS)” is
considering extending the concept of simulation environ-
ment to include components that provide simulation ser-
vices regardless of protocol, while excluding components
that provide real-world services. The salient point here is
that those other views can be accommodated, and should
be made precise, by corresponding topologies at the refer-
ence architecture level.

For our example, a topology with more than one special-
ized architecture could have been declared. For example,
one might want to clearly delineate a cluster of C2 systems
that relate to a C2 interoperability standard, in addition to
delineating the simulation environment. A reference archi-
tecture is a pragmatic tool, and in our example it suffices
to delineate the simulation environment.

6.2. Reference architecture

Moving on, we pick ABBs from our repository — the C3
Taxonomy. We want to design a reference architecture for
federations of systems that enable operations planners to
play out their plan in a simulation. For the full design,
one should start at the operational level in our repository
with operations planing ABBs situated in the Business Pro-
cess category (Figure, 9). For brevity, we are focussing
on the CIS aspect of architecture. In Figure 13, we have
assembled ABBs from the User Applications, COIl Services and
Core Services layers.

The User Applications ABBs are descriptions of pieces of
user-facing functionality in, say a C2 system, that oper-

15

Operations Planning with Simulation Support for Wargaming
‘ T |

]

NFFI MSDL IC-BML
L — MSDL C-BML —|
|
MSDL C-BML
GeolJSON
HLA federation

T\ /

RPR-FOM/LLBML ~ RPR-FOM
GeoJSON ~
WKT
WKT —

|
|—GeoJSO NQ W|KT

Geospatial Web Map

—GeoJSON: ‘ ‘

Figure 13: Reference hybrid architecture for “Simulation Sup-
port for Operations Planning” with architecture building blocks
from C3 Taxonomy.

ations planners use for planning. This functionality sup-
ports planners in developing alternative courses of action
— Develop Course of Action (COA), in developing a synchro-
nization matrix for coordinating movements of forces and
equipment — Develop Sync Matrix, in acting out the various
courses of action — traditionally done on a large table-top
map with toy-sized figures, but now moving to computer
simulations — Conduct Structured Wargaming and in analysing
wargaming results — Analyze Wargaming. The lines intercon-
necting the ABBs indicate APs; i.e., patterns of interplay
between the pieces of functionality. The C3 Taxonomy
is under construction and will always be in flux due to
changing requirements. Most ABBs and some APs that
we show here reside in the taxonomy, while others may be
candidates for future inclusion.

The User Applications ABBs are dependent on a number
of services — dependencies which should be specified as
APs in the taxonomy. Here, we only show the interaction
with the simulation environment, which presents itself as
a service.

The simulation, which is a HLA federation, is built up
from four ABBs: The Constructive Simulation Control ABB rep-
resents the simulation engine. The Battle Space Simulation
ABB exposes the simulation environment as a service by
specifying service operations to decompose orders implied
by a COA into lower-level commands for entities (e.g., ve-
hicles) and entity interactions that enable detailed simu-
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Figure 14: Target hybrid architecture for “Simulation Support
for Operations Planning” with concrete systems in olive.

lation of a course of action; for this a FOM module for
low-level BML (LLBML) is necessary [Alstad et al., 2013].
The Reports ABB also exposes the simulation environment
as a service by specifying service operations for subscrib-
ing to reports on events in the simulation. These ABBs
would reside in the COI Services layer.

A C2sIM Broker ABB facilitates interoperability between
C2 systems and the HLA federation. It also handles stor-
age and retrieval of plans and orders on a Ground Truth
Battle Space Objects/Events ABB. The Develop COA ABB uses
the NATO Friendly Force Information de facto standard
[North Atlantic Treaty Organization, 2014] for updating
the position of forces.

Distributed systems raise the challenge of verifying and
validating the composition of its parts. As mentioned in
Section 4.3.2, composing simulations from services (which
are very loosely coupled) adds to this challenge; even when
service implementations are verified and validated accord-
ing to their service descriptions. However, the service ap-
proach itself is an important means to meet this challenge,
as it enables factoring out common functionality that must
be equivalent across all systems. In this example, where
simulations and C2 systems interoperate, both C2 user
application ABBs and simulation ABBs consume common
geospatial services: Optimal Route for route planning, Line
of Sight for assessing coverage from enemy detection, and
Terrain for terrain data. Thus planning personnel develop
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plans, and the simulation plays the plans, using the same
models. This use of common functionality increases consis-
tency across systems and reduces the burden of verification
and validation.

These common services, which reside outside the sim-
ulation environment, are stateless, and necessary data
from the HLA federation is provided as input to the ser-
vices. The services are brokered by a Web Processing Ser-
vices (WPS) [Open Geospatial Consortium Inc., 2007] and
Web Map Services (WMS) [International Organization for
Standardization, 2005] WPS WMS Broker ABB that manages
interoperability between geospatial standards such as Geo-
JSON [Butler et al., 2008] and Well-known Text (WKT)
[International Organization for Standardization, 2015].

This assembly of ABBs and APs is implementation in-
dependent but at the same time focused on a certain type
of use and domain. It is a reference architecture for a
concept of “Simulation Support for Operations Planning”.

6.3. Target architecture

From this reference architecture, various target architec-
tures can be designed. Figure 14 illustrates one possi-
bility of concrete systems that provide the functionality
specified in the ABBs. The User Applications ABBs are im-
plemented by a C2 system (NORCCIS) and a web-based
front-end for simulation-supported wargaming (since the
particular C2 system does not support C2SIM interoper-
ability and is used for developing COAs only). In the
future, all this user-facing functionality could rather be
implemented in the form of loosely coupled apps to be
downloaded in deployable and mobile devices. In the HLA
federation, a Multi Agent System provides both the Reports
and Battle Space Simulation services, and VR-Forces (a config-
urable COTS simulation framework) provides simulation
control. A GeoAnalyst System developed at FFI provides
the geospatial services. The Web Map Services (violet)
shall be consumed from elsewhere so have no implemen-
tation here. Service-oriented communication technology
choices (Section 4.1) are indicated. An earlier version of
this concrete federation is implemented and is described
in [Bruvoll et al., 2015] under the name of “Simulation-
Supported Wargaming for Analysis Plan” (SWAP).

7. LVC Simulation for Operations Training

For further illustration, we show another reference hybrid
architecture based on the C2SIM topology in Figure 12.
So-called Live simulation has live personnel using live
equipment, but where, e.g., live ammunition is replaced by
laser pulses and detectors networked with positional data
so as to provide a comprehensive digitized view of events.
Virtual simulation has live personnel in a virtual envi-
ronment (e.g., vehicle manoeuvre in gaming), and Con-
structive simulation has totally computer-simulated enti-
ties. Combining the three modes in so-called LVC simula-
tion in a distributed system is assumed to increase training
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Figure 15: Reference hybrid architecture for “LVC for Opera-
tions Training” with architecture building blocks from C3 Tax-
onomy.

capabilities and training effect. In Figure 15, ABBs rep-
resenting Live and Virtual (as black boxes) are federated
with the Constructive HLA federation via Convert Protocol
ABBs.

During training in a simulated environment, simulated
entities should be fed to the training forces’” C2 systems
(which commanders use to monitor and control opera-
tions) and Battle Management Systems (BMS) (which
war-fighting personnel use to monitor positions of own
forces and detected opposing forces). Thus, a Monitor Oper-
ation ABB and a Monitor Common Operational Picture ABB in-
teroperates with the LVC simulation systems via a C2SIM
Broker ABB. Exercise Control personnel use the Collective
Training and Education (CTE) Train and CTE Analyse ABBs to con-
trol, monitor and analyse the exercise. The exercise can
be initialized by retrieving plans and orders (perhaps gen-
erated during “Simulation Support for Operations Plan-
ning”) from the Ground Truth Battle Space Objects/Events ABB.

Another aspect of the distributed systems challenge
when federating multiple simulations, is that simulation
engines operate on their own (often proprietary) represen-
tations and models. This entails that simulated entities
may be treated unequally in the different systems. By
bypassing proprietary functionality by using common ser-
vices, the “fair fight” criterion can be met to the extent
that all systems can use the same environmental data, the
same models for simulating on that data and the same

17

user-facing capabilities to render the effects. This ensures
that players across simulations experience objects (e.g.,
vegetation for cover from enemy detection) and interac-
tions (e.g., effects of artillery strikes on armoured vehi-
cles) equivalently. In this example, in addition to shared
geospatial ABBS, a Weapons Effects ABB offers subscription
to centralized damage assessment for use both within and
outside the simulation environment.

This assembly of ABBs and APs is a reference ar-
chitecture for a concept of “LVC Simulation for Opera-
tions Training”. A federation which implements aspects of
this reference architecture, but with little use of service-
oriented technology, is described in [Hannay et al., 2014].

8. Conclusion

There are ongoing discussions on the role of simulation en-

vironments. For example, since following and implement-
ing HLA can be laborious, more lightweight looser solu-
tions are often sought for. One contemplates whether the
simulation environment can be dissolved completely and
RTT functionality replaced by some other standard mid-
dleware. We do not answer that question on the imple-
mentation level, but at the implementation-independent
architecture level, we hold that it is necessary to cater
for the simulation environment as an integral logical unit
relative to any larger context, regardless of choices of im-
plementation. On the one hand, it is beneficial to view
a simulation environment as a black box offering simula-
tion as a service to, e.g., C2 systems. On the other hand,
it is beneficial to view simulation environments as SOAs
operating on highly specialized rules optimized for simu-
lation purposes. In both cases, dissolving the simulation
environment into the surrounding context will not enable
these two views.

To cater for this, we proposed a hybrid architecture
framework — derived from a a general architecture frame-
work — which allows specialized architectures to reside in-
tact in a larger SOA. Service orientation and cloud technol-
ogy are leveraged strategically, and our hybrid architecture
framework supports offering the specialized federation as
a service to the encompassing federation and also viewing
the specialized federation itself as composed of services.
All this can be modelled coherently and cohesively using
domain overarching repositories for ABBs and APs such as
the C3 Taxonomy. Further, hybrid architecture topologies
can be used as a tool to delineate specialized architectures.

This work has put forth concepts for better architectural
work. These concepts should be further refined and elabo-
rated together with empirical studies, iteratively and incre-
mentally. In addition, executable architecture models [Wa-
genhals and Levis, 2009], and more recently, executable
models of federations of SOAs [Abusharekh et al., 2011],
can be used for studying performance issues; particularly
pertinent for simulations in hybrid architectures. We en-
courage instantiations of the hybrid architecture frame-
work and our research questions in other domains. We



encourage architects and developers to use the reference
hybrid architecture outlined here and to provide feedback
on their experiences.

Several “reference architectures” at diverse levels of ab-
straction for modelling and simulation in the context of
service orientation have been put forth in the defence do-
main [NATO Science and Technology Organisation, 2013;
Neugebauer et al., 2009]. We think it would be beneficial
for further work to consolidate and coordinate these efforts
in the hybrid architecture framework and its wide span of
architecture abstraction.
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