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Abstract— This paper presents an application of compressed
sensing in a pulsed system such as a radar or sonar to form
range-Doppler maps. Instead of transmitting a train of pulses
we portrait a system where the pulse emission itself takes place
in a sparse manner. We show that any empty data segments can
effectively be filled in by sparse reconstruction which can also be
used to extrapolate supplementary values. Simulations covering
various conditions are used to demonstrate the effectiveness of
the proposed setup.
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I. INTRODUCTION

Pulsed sensing systems such as radars play a key role in
surveillance, detection and tracking of targets. Such a system
typically operates by transmitting a pulse and performing
a matched filtering operation on the incoming delayed and
Doppler-shifted pulse echoes. This process of transmitting
and receiving incoming pulses is repeated a number of times
(slow-time) within a defined coherent processing interval. The
collected data is then often stacked together in a matrix and a
Fourier transform across the slow-time domain is implemented
to construct a range-Doppler map. A range-Doppler map
can be used for target detection and tracking as it provides
estimates of both range and velocity. Modern radars are further
typically equipped with electronically steering arrays and are
able to digitally steer a beam instantaneously. While emitting
pulses at a specific direction a radar may desire to skip over a
few pulses and rather transmit these towards a different angle
for various purposes, such as tracking, and then come back to
the main angle to resume standard operation. Alternatively,
a radar may split the number of pulses available within a
coherent processing interval between several directions and
only transmit all the pulses at the same angle if some unusual
activity does show up. This type of continuous beam switch-
ing, with the full array, introduces empty incoherent data gaps
in the slow-time domain and a range-Doppler profile has to be
composed with fewer pulses, resulting in limited integration
gain and lower Doppler bin resolution. Lack of data within
the dwell period may also occur due to other causes such as
high duty cycle and hardware limitations.

In this regard, an open research topic is to what extent
empty data segments can be reconstructed or interpolated from
available data, particularly for the purpose of a range-Doppler

map. In this work we propose the use of a compressed sensing
(CS) framework [1], [2], [3] with emphasis on the slow-time
/ Doppler domain. Several previous papers have considered
various aspects of employing CS and sparse reconstruction is
a radar context [4], [5], [6], though the explicit construction
of a range-Doppler map has not been given much attention.
In contrast to for example [7], [6], [8], [9] we do not assume
that the radar emits specific modulated subpulses or even a
continuous pulse of trains in the same direction and also do
not infer that the sampling is done in a sparse or irregular
fashion. We presume that sampling of incoming echos at a
given rate is not really a bottleneck issue and the presented
concept instead emphasizes emission and thereupon reception
of whole pulses in a sparse manner. Further on, we treat
each range bin as a separate one-dimensional problem leading
to the use of tractable partial Fourier matrices [10]. The
motivation for CS and sparse reconstruction comes from the
fact that a range-Doppler profile is likely to be sparse in nature.
Each target typically occupies a few Doppler bins and as
the overall contour is otherwise dominated by noise a sparse
reconstruction strategy is likely to be competent at assembling
a profile where the missing data has been repleted.

In addition to interpolating missing values, another impor-
tant application of the method is to extrapolate data beyond
the end points to formulate additional slow-time statistics.
Extrapolating from a sparse reconstruction viewpoint, incor-
porating all available data, can be a promising extrapolating
approach as the relationship between slow-time samples and
Doppler domain is taken into account. It is noteworthy that
before proceeding with a Fourier transform across slow-
time, a windowing function is often applied to smooth out
measurements and reduce sidelobe levels; data collected at
the beginning and end of the assumed integration period is
thus weighted down. An extrapolation can conjointly provide
more substance in making maximum use of available data.
An interesting example of extrapolation, though in a different
context, has been presented in [11].

We show that the utilization of CS and sparse reconstruction
has considerable merit for generating range-Doppler plots as
empty slow-time segments can to a great extent be compen-
sated and filled in. The same methods, through extrapolations,
aid in improving the Doppler bin resolution and integration
gain [12]. The concept is directly applicable to many types of
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pulsing systems, such as sonars, though the remainder of the
paper is radar centric.

II. SIGNAL MODEL

We consider a radar system where transmission and recep-
tion of N pulses takes place during a determined coherent
interval. At each pulse repetition interval p(t) is emitted and
the incoming signal at slow-time u, u = 1, 2, ..., N , be
described by

s(t, u) =
∑
n

σnp(t−∆n)ejvn,u + w̃(t) (1)

where t is fast-time, σn are the reflectivity levels of incoming
echoes and targets while ∆n is the signal delay associated
with each reflector and j =

√
−1. w̃(t) is white Gaussian

noise, ejvn,u is the experienced Doppler phase shift which for
a constant velocity object is typically modeled by

vn,u = vn,u−1 +
rn 4πfc
c PRF

, (2)

where rn is the radial velocity of target n, fc being the carrier
frequency, PRF is the pulse repetition frequency and c is the
speed of light [13]. For convenience we can define vn,0 = 0. It
is assumed that within the coherent time frame of N pulses the
targets do not undergo any significant alteration in amplitude
and there is no noticeable shift in time delay.

After transmission of each waveform the radar samples any
incoming pulse reflections and a matched filtering operation is
carried out via the time-reversed and conjugated pulse p∗(−t).
The pulse compressed data can then be specified as

Y (t, u) = p∗(−t)∗s(t, u) =
∑
n

σnpsfp(t−∆n)ejvn,u +w(t)

(3)
where ∗ prescribes convolution in fast-time and psfp(t) =
p(t) ∗ p∗(−t) is the pulse spreading function. In a practical
setting the fast-time parameter will also be discrete, we denote
this explicitly as

Y(tm, u) = Y (tm∆t, u) ∈ CN×R, tm = 1, 2, ...., R, (4)

given ∆t as the time-resolution of the radar. R∆t thus corre-
sponds to the largest time-delay associated with the maximum
unambiguous radar range.

For further processing Y(tm, u) is typically multiplied in
slow-time by a windowing function w(u) ∈ CN×1 to yield

YW (tm, u) = w(u)Y(tm, u) ∈ CN×R. (5)

Performing a Fourier transformation with respect to slow-time,
over all discrete time-delays, or equivalently ranges, results in
the range-Doppler map matrix D:

D(tm, ω) = F YW (tm, u) ∈ CN×R. (6)

F is the discrete Fourier matrix of size N × N , Fk,l =
exp(2πjkl/N). Notice that the above process is independent
for each range bin and can also be executed through an FFT
to make it computationally more efficient. ω can readily be
converted into [−vmax vmax] where vmax = c PRF

4fc
is the

maximum unambiguous velocity [13], with the resolution in
Doppler bin space determined by N , ∆ω = 2π

N . The Doppler
bin resolution hence refers to the number of bins in the
velocity domain which is directly related to the number of
measurements in slow-time. In the Doppler profile the main
factors forming the contour will be phase shifts originating
from (2). Targets showing a consistent velocity within the
dwell period will after Fourier processing appear concentrated
in Doppler; only occupying a few select velocity bins subject
to noise, measurement inaccuracies and the applied window
function. As long as there are only a few targets at each range
bin this leads to an overall sparse profile.

A. Sparse reconstruction

We assume that for whatever reason the radar does not
transmit N pulses right after each other in the same direction
rather the truncated Ỹ(tm, ũ) ∈ CK×R only contains K < N
slow-time measurements, ũ = 1, 2, ...,K, collected arbitrary
within the coherent interval of N pulses. The slow-time
positions where data is collected is designated by the set D.
With a curtailed dataset the measured Doppler model will
follow a discontinuous form

vn,ũ = vn,ũ−1 + k(ũ)
rn 4πfc
c PRF

. (7)

The discrepancies associated with the transmission pattern are
provided by the function k(ũ) ∈ N and a k(û)|û=υ > 1
indicates a phase jump due to irregular sampling in slow-time.
A typical range-Doppler plot may now still be constructed
by applying a Fourier matrix of size K × K on each range
bin, however, with incoherent data this will result in spectral
leakage and lower integration gain.

The method we introduce is to assemble an extended range-
Doppler profile using a sparse reconstruction procedure and
thus attempt to retain a high resolution in slow-time. This can
be accomplished if from the K slow-time measurements we
can interpolate and fill in the missing N − K values thus
bringing the number of bins back to N . The objective being
to preserve the Doppler bin resolution and potentially also
the accuracy even though fewer pulses have actually been
emit. This will also transform incoherent measurements into
a coherent form suitable for a range-Doppler plot without
spectral leakage. The process can likewise be extended to
extrapolate additional bins on the edges. This will further
increment the Doppler bin resolution and with a satisfactory
extrapolation of targets provide a narrower velocity response.

The ideal solution should inter- and / or extrapolate to
expand (7) into a form of (2) with constant phases across slow-
time as only this would lead to full focusing of each individual
target in Doppler. Consequently, as the overall profile is
assumed to be sparse in Doppler the solution will be the one
that maximizes sparsity in this domain. For this we define L to
indicate the number of desired output entries in slow-time and
assume that L ≥ N ; an L > N signifying extrapolation. The
reconstructed profile in slow-time is denoted by Ŷ(tm, û) ∈
CL×R, û = 1, ..., L and the relationship to range-Doppler map
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is as previously governed by

D̂(tm, ω̂) = F̂ ŵ(û)Ŷ(tm, û) ∈ CL×R (8)

where F̂ is an L× L Fourier matrix. We further define a binary
selection matrix M ∈ BK×L by taking an L×L identity matrix
IL×L and removing respective rows for which no collected
data is available. We specify this as

M = HD(IL×L) (9)

where the function HD only preserves the rows of the given
matrix as specified by the set D. This purpose of the selection
matrix is to allow for extraction of values from positions where
slow-time data has been accumulated. We further form w̄(ũ)
by selecting a windowing function of L entries, ŵ(û) ∈ CL×1,
and truncating it to K values:

w̄(ũ) = Mŵ(û) ∈ CK×1 (10)

The reconstructed matrix should have the same set of values
at measured data placements, which can be expressed as

(MŶ)(tm, ũ) = Ỹ(tm, ũ), (11)

for notational simplicity the index terms are only given for
the final product. With windowing functions incorporated the
requirement becomes

M(ŵŶ) (tm, ũ) = (Mŵ)Ỹ (tm, ũ). (12)

We can re-write this as

(MF̂∗F̂ŵŶ) (tm, ũ) = w̄Ỹ (tm, ũ) (13)

which leads to

F̂RD̂ (tm, ω̂) = w̄Ỹ (tm, ũ), (14)

given the partial inverse Fourier matrix F̂R = MF̂∗ ∈ CK×L.
As the reconstructed solution is assumed to be sparse in

Doppler it is most approachable to recover it directly in
this domain. Given a particular range T = tm the objective
is therefore to determine a sparse Doppler profile D̂(T, ω̂)
consisting of L Doppler samples while assenting with the
observations. The reconstruction problem under convex relax-
ation can accordingly be formulated as

D̂(T, ω̂) = arg min ||Ḋ(T, ω̂)||1 (15)

subject to the constraint

|| F̂R Ḋ(T, ω̂)− w̄(ũ) Ỹ(T, ũ) ||2 ≤ ε (16)

where ε is acceptable error limit. The constriction is a relaxed
version of (14) in order to accommodate for the presence of
noise and other inaccuracies. Finding an independent solution
over all defined values of tm = 1, 2, ...., R results in range-
Doppler map matrix D̂(tm, ω̂) where any missing data would
effectively have been inter- or extrapolated. As this process
is independent for each range-bin it may be executed in
parallel. Several efficient algorithms have been proposed in the
literature with regard to sparse reconstruction [2], [13], [14],

[15] and we refer to them for more details. The bin resolution
of ω̂ in (14) and (15) is now conditioned by L, ∆ω̂ = 2π

L .
The inverse Fourier matrix F̂R has a crucial role in CS

algorithms in order to find a unique and exact solution to the
posed problem. Fortunately, partial Fourier matrices have been
well studied in the literature as they are often encountered in
various scenarios and have been shown to provide competent
performance in CS problems [1], [10], [16]. The design of
the transmission pattern defined by the set D which results in
F̂R can be selected randomly (e.g. random beam switching)
[1], [17] or designed deterministically (e.g. predetermined
beam switching pattern) where the matrix can be optimized
beforehand [14], [18], [19]. An important aspect with regard
to perfect recovery is related to the minimum number of
required measurements. For that, it has been shown in e.g. [17]
that for random Fourier, and similar, matrices the number of
measurements needs to be on the order of K = O(sT log4 L)
for a perfect recovery, where sT corresponds to the number
of targets of the Doppler profile D(T, ω). Nevertheless, these
bound contain several unsettled scaling factors which makes it
difficult to determine how many measurements, or in our case
pulse emission and receptions, are really required to form a
range-Doppler map of sufficient quality.

Increasing L by adding extrapolating points at the beginning
and end of the sequence forces an increment on the resolution
of the Doppler profile by appending additional bins. A solution
to the problem as posed here must still attempt to maximize the
sparsity which is achieved if objects of interest are extrapolated
with a determined velocity and consequently gets confined
more and more narrowly to an exact velocity.

In order to evaluate the practicability of sparse reconstruc-
tion and demonstrate the principles introduced we therefore
resort to simulations in the next section to quantify the per-
formance for standard sparse scenes as normally experienced
by e.g. long range sensing radars.

III. SIMULATED SCENARIOS

This section reviews the performance of CS and seeks
restoration of range-Doppler maps with limited amount of
available data. For this end we employ an in-house radar sim-
ulator which can simulate various conditions. Two Swerling 1
targets with radar cross section of 0.1m2 (T1) and 0.3m2 (T2)
are simulated with velocities of −20m/s and 20m/s. Targets
altitude is 10m and are placed, respectively, approximately 92
and 125km from the sensor. Although both targets have a low
radar cross section having a two target scenario allows us to
track for any arising discrepancies and it is also possible to
view T1 as a version of T2 where due to e.g. range walk or
other issues the target appears much dimmer. The coherent
period is assumed to correspond to N = 32 pulses. The
radar propagation path is modeled with APM [20] and antenna
parameters follow beamwidths of 2◦, altitude 1000m operating
at 3GHz, a bandwidth of 0.8 MHz, emitting power at 15kwatt,
antenna transmit and receive gain of 37dB and an PRF of
3000. The average noise figure evaluates to −103dBm and the
Blackman window has been utilized throughout. The sparse
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Fig. 1: Original R-D map with 32 pulses

solutions are found through a spectral projection gradient
method [15] and ε is computed by estimating the average noise
level and scaling it by L. The displayed results are found after
a single run of the algorithm for each range-bin.
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Fig. 2: Sparse reconstruction, 10 extrapolations on both ends

A. Extrapolation only

We first consider an example case where the radar transmits
N = 32 pulses in the same direction with no deviation and
sparse reconstruction with (15) and (16) is solely used to
extrapolate ten additional values at both ends. This leads to
L = 52 samples in slow-time with a correspondingly forced
increase in Doppler bin resolution.

Figure 1 shows the original N = 32 pulse standard range-
Doppler plot generated from simulated data with a Fourier
transform and the objects span around 4 Doppler bins of
prominent value. All range-Doppler maps shown display the
results from the full ||D(tm, ω)||2, the truncated ||D̃(tm, ω̃)||2
or the reconstructed ||D̂(tm, ω̂)||2 with logarithmic scaling
between −105dBm to −45dBm. In the original case the SNR,
after processing, amounts to 35.71dB for T1 and 48.51dB for
T2. The outcome from extrapolated sparse reconstruction with
a total of 20 extra Doppler bins is given in figure 2 where the
targets are still retained within the same number of bins but
now overall resulting in a narrower response greatly improving
the velocity accuracy. In addition, there is an increase in the
peak energy level for both targets of around 3dB. Notice that a
sparse solution will contain a large number of values identical

to zero making it impractical to compute the signal to noise
ratios.
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In order to quantify the impact of varying number of
extrapolations, figure 3 displays the average peak target values
for both target T1 and T2 over 1000 simulations as the number
of extrapolations, split equally on both sides, is varied from
0 to 60 under randomly generated noise. The integration gain
keeps building while simultaneously the velocity estimates are
narrowed down. This though also occurs for e.g. any clutter,
see figure 4 for examples of extracted Doppler profiles, at
target ranges, generated with various number of extrapolations
under sparse reconstruction. The main purpose of this is to
show that the extrapolation process is indeed taking place
correctly with respect to the given target. One should be
mindful of this increase in energy if a conversion back to
slow-time is performed.
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Fig. 4: Doppler profiles for varying number of extrapolations

For classic sparse radar scenes extrapolation through sparse
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Fig. 5: Standard R-D map with 20 random pulses (out of 32)
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Fig. 6: Sparse reconstruction with 20 random pulses (out of 32) and
20 extrapolations

reconstruction can augment radar performance in a noticeable
manner.

B. Random beam switching

A more typical implementation of the CS emission and
reception strategy is to have consecutive exchanging beams in
the same coherent time frame where the radar transmits pulses
randomly at selected angles. The sparse reconstruction scheme
can then be used to fill in empty positions and extrapolate in
the same procedure to maintain a high comparative resolution
in Doppler as if all pulses had been emitted in the same
direction.

An example of this is demonstrated next where the radar
only transmits K = 20 pulses, out of standard N = 32, in
a random order, at the main direction. Figure 5 shows the
outcomes in the case of standard pulse-Doppler processing
with degraded Doppler bin resolution and accuracy due to
limited slow-time data. Both targets are likewise dimmer
with spectral leakage. The result from sparse reconstruction
incorporating 20 extrapolations (L = 52), with the identical
data, given in figure 6 is very contrasting. The targets stand
out clear with a comparable power level and still preserving
good accuracy in Doppler much in line with figure 2.

Figures 7 and 8 show more comprehensive graphs over how
the average peak target energy varies with varying number of
available pulses and sparse reconstruction with or without ex-
trapolation alongside standard range-Doppler processing. The
averaging is carried over 1000 randomly different transmission
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Fig. 8: Averaged peak target energy T2

patterns. An averaging is here carried out to help evaluate
the performance under various transmission patterns rather
than one specific emission structure. While there is a subtle
decrease as the number of pulses is reduced the plots do
manifest that a sparse reconstruction is able to retain the
target power level well beyond and the extrapolation gain is
preserved to a high degree.

With very limited amount of pulses available, the target
peak power is still maintained, however, the Doppler profile
start showing structural breakup and ghost targets. For a
visual demonstration of this deterioration figure 9 details some
examples of reproduced Doppler profiles for targets T1 and
T2 with various number of randomly available pulses and
assuming 10 extrapolations on both sides.

An important measure for accurate reconstruction is there-
fore the target span diversification accounting for number
of bins occupied by a target. Figure 10 depicts the average
number of Doppler bins, for the specific target ranges, who
exceed the noise threshold by 20dB under different number of
available pulses. Both standard Fourier transform and sparse
reconstruction is compared and averaged over 1000 runs. A
spread across too many bins reveals inaccurate estimation and
spectral leakage whereas too few bins imply a more dim object
or tight signal reconstruction. As T1 is a low reflecting target
the number of Doppler bins occupied by it declines more
rapidly as fewer and fewer pulses are available for reassembly.
Nevertheless, sparse reconstruction with extrapolations is able
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Fig. 9: Examples of sparse reconstructed Doppler profiles for varying
number of available pulses

to preserve the spread to approximately four bins as long as
at least K ≥ 20 pulses are available. For T2 (lower plot)
the average number of Doppler bins remains at four bins
if K ≥ 15 is fulfilled, otherwise the target is no longer as
firmly focused. This further lends support to the effectiveness
of the sparse restoration approach as long as extreme low data
circumstances are avoided.

In contrast, reconstruction with basic Fourier transform
delivers much more fluctuating results, even with the lack of
just a few pulses, due to uncontained spectral leakages and
with low energy as shown in the previous plots.

The focus of this work has been on sparse surroundings,
however, sparse reconstruction may well be utilized in the
presence of multiple targets in the same Doppler bin. With
less sparsity, the number of pulses required for CS to yield
acceptable results will though increase; we do note that if
the number of pulses is insufficient to resolve a target then
the target gets spread out over several potential velocities
(see e.g. figure 9) which in itself starts to reveal inaccurate
reconstruction. The radar can then emit more pulses at the
specific direction or alter the processing interval. A study on
these aspects will be presented in future work.

IV. CONCLUSION

Range-Doppler maps are of great importance in modern
radar systems and this work proposed application of sparse
reconstruction techniques for their formation. It was shown
that a radar may reduce the number of pulses transmitted in a
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Fig. 10: Average number of Doppler bins exceeding threshold

coherent processing interval and effectively regenerate missing
data. Simulations were used to demonstrate that good quality
maps can be obtained with moderate amount of radar data
under typical sparse conditions. The same approach can also
be extended to extrapolate additional values at the beginning
and end of a sequence to increase Doppler bin resolution.
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