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The stability of superconducting films with respect to an oscillatory thermomagnetic instability is
investigated. Closed expressions for the threshold magnetic field and temperature are derived based
on linear stability analysis. We find that the oscillatory modes turn unstable at much lower electric
field than other modes and they are hence also the most dangerous with respect to nucleation of
dendritic flux avalanches.
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I. INTRODUCTION

The irreversible electromagnetic properties of type-II
superconductors are commonly explained in terms of the
critical current density jc, as introduced by Bean.1 In the
corresponding critical state the distribution of magnetic
flux is nonuniform and metastable. However, since jc is a
decreasing function of temperature the metastable state
can suffer from an instability driven by the Joule heat
generated during flux motion. In bulk superconductors
this thermomagnetic instability gives rise to abrupt entry
of large amounts of flux, so-called flux jumps, which may
cause the entire superconductor to be heated to the nor-
mal state.2–6 In some cases, pronounced oscillations in
the magnetization and temperature have been detected
prior to such flux jumps.7,8

In film superconductors experiencing transverse mag-
netic fields, the same instability gives rise to abrupt flux
penetration in the form of dendritic structures rooted at
the sample edge.9 Using magneto-optical imaging (MOI)
the residual flux distribution left in the film after such
avalanche events10 have been observed in many supercon-
ducting materials.11–15 The experiments also show that
there is a threshold magnetic field, Hth, for the onset
of avalanche activity, and that the unstable behavior is
restricted to temperatures below a threshold value, Tth,
see Fig. 1. These thresholds have been explained on the
basis of linear stability analysis of the nonlinear and non-
local equations governing the electrodynamics of such
films.16–23 Moreover, those theoretical works show that
in order to trigger an avalanche electrical fields in the
range E = 30-100 mV/m are required.

Experimentally, one finds in films of many supercon-
ductors, such as MgB2, Nb and NbN, that avalanches oc-
cur even when the magnetic field is ramped very slowly,
thus inducing correspondingly small electric fields. For
films some millimeters in lateral size, 2w, placed in a
magnetic field ramped at a rate of µ0Ḣa = 10 mT/s,
the electric field along the edge can be estimated24 to
µ0Ḣaw ∼ 10 µV/m, i.e., far below the theoretical thresh-
old values. This inconsistency led to the suggestion25

that micro-avalanches of non-thermomagnetic origin are

initial precursors, which in turn trigger the large and
powerful thermomagnetic avalanches in superconducting
films.

In the present work the vast discrepancy in the onset
electrical fields is addressed theoretically. By analysing
modes with a complex instability increment, i.e., consid-
ering scenarios involving oscillatory precursor behavior,
it is found that superconducting films become unstable
at much smaller electric fields than previously expected.
This shows that the instability can develop directly from
the low E-field background of the critical state, without
involving micro-avalanches of unknown origin. The pre-
sented theory is fully quantitative and depends only on
measurable parameters. Several aspects of the analyti-
cal results are verified by quantitative comparison with
numerical solutions of the full nonlinear thermomagnetic
problem.

II. MODEL

Consider a superconducting film shaped as a strip of
thickness d and width 2w, where w � d. The strip is very
long in the y-direction, and has thermal contact with a
substrate, see Fig. 2. The sample is initially zero-field
cooled to a temperature, T , below the superconducting
transition temperature, Tc, whereupon a perpendicular
magnetic field Ha is applied at a constant rate Ḣa.
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FIG. 1. Generic thermomagnetic stability diagram of film
superconductors.
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FIG. 2. (Color online) Sample geometry: A long supercon-
ducting strip in thermal contact with a substrate experiencing
an increasing magnetic field Ha applied along the z-axis, in-
ducing currents and electrical fields in the y-direction.

Assuming that the overall flux dynamics in the super-
conductor follows the Bean model, the flux will penetrate
to a depth l increasing with the applied field as26

l/w = 1− cosh−1(πHa/djc). (1)

This flux motion induces an electrical field, which is max-
imum at the strip edge where the value is given by,24

Eedge = µ0Ḣaw tanh (πHa/djc) . (2)

For perturbations of the Bean state, we describe the
superconductor using the more general model,27

E =

{
ρn (J/djc)

n−1
J/d, J < djc and below Tc,

ρnJ/d, otherwise.
(3)

Here, J is the sheet current, ρn is the normal state resis-
tivity, and n is the flux creep exponent. The Bean model
corresponds to the limit n→∞.

The electrodynamics follows the Maxwell equations

Ḃ = −∇×E, ∇×H = Jδ(z), ∇ ·B = 0, (4)

with ∇ · J = 0, µ0H = B. The heat-flow in the strip is
described by

c ˙̃T = κ∇2T̃ − h

d
(T̃ − T ) +

1

d
J ·E , (5)

where T̃ is the local temperature in the superconductor,
and T is the uniform substrate temperature. The super-
conductor’s specific heat is c, its thermal conductivity
is κ, and h is the coefficient of heat transfer between
the strip and the substrate. The temperature dependen-
cies are chosen as c = c0(T̃ /Tc)

3, κ = κ0(T̃ /Tc)
3, and

h = h0(T̃ /Tc)
3. For the electrodynamical parameters we

use jc = jc0(1− T̃ /Tc) and n = n0Tc/T̃ .

III. THRESHOLDS AND OSCILLATION
FREQENCIES

To find the characteristics of the behavior near the
onset of an avalanche consider first the threshold electric
field, Eth. In Ref. 28 it was shown based on the Eqs.
(3)–(5), that at low T the threshold condition can be
expressed as

jc
T ∗nEth− κk2−

h

d
− 2

k

(
k2x +

k2y
n

)
c

µ0djc
nEth = 0. (6)

Here, T ∗ = 1/|∂ ln jc/∂T | and kx and ky are the Fourier
space wave-vectors. It was also found that the instability
is accompanied by temporal oscillations with a frequency,
ω, given by

ω2 =
2

k

nEth

µ0djcc

×

[(
k2x +

k2y
n

)(
κk2 +

h

d

)
+
(
k2x − k2y

) jcEth

T ∗

]
.

(7)

As Ha increases from zero, the most unstable modes
are,28 ky = 0 and kx = π/2l, and in what follows only
these modes are considered.

First, at small Ha, the main mechanism for suppres-
sion of the instability is the lateral heat diffusion. Thus,
neglecting in Eq. (6) the terms proportional to c and h,
one obtains

Eth,κ =
κT ∗

njc

( π
2l

)2
. (8)

For small Ha, the Eq. (1) gives l ≈ (w/2)(πHa/djc)
2, and

from Eq. (2) the electric field is Eedge ≈ µ0ḢawπHa/djc.
Inserting these limiting expressions in Eq. (8) the thresh-
old applied magnetic field becomes,

Hth,κ =
djc
π

(
π2κT ∗

nw3jcµ0Ḣa

)1/5

. (9)

This formula gives the threshold field as a function of
T through the temperature dependencies of κ, jc and n.
The corresponding oscillation frequency, calculated from
Eq. (7) assuming n� 1, is

ωκ = µ0Ḣan

√
2πw

µ0dcT ∗ , (10)

which depends on temperature through n, c and T ∗.
Then, at deeper penetration, when l � (π/2)

√
κd/h,

the main mechanism suppressing the instability is heat
removal by the substrate. In this case one can in Eq. (6)
ignore the terms propotional to κ and c, which gives

Eth,h =
hT ∗

ndjc
. (11)
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FIG. 3. (Color online) Threshold magnetic fields Hth,κ (blue),
Hth,h (black), and Hth,c (dashed red), as functions of temper-
ature. The discrete data represent the numerical results. The
simulations used parameters for MgB2, see the main text.

Combining this with Eq. (2) to eliminate the E-field one
obtains the following threshold magnetic field,29

Hth,h =
djc
π

atanh

(
hT ∗

ndjcµ0Ḣaw

)
. (12)

Also this case is accompanied by oscillations, and at full
penetration, when E ≈ µ0Ḣaw, the frequency is

ωh = ωκ/
√

2 . (13)

The actual oscillation frequency is, for most tempera-
tures, between ωh and ωκ.

From Eq. (12) it follows that Hth,h diverges when

hT ∗

ndjcµ0Ḣaw
= 1.

Thus, when the left hand side exceeds unity a ther-
momagnetic instability is not possible, and is therefore
the condition that determines the threshold temperature,
Tth. From this one finds

Tth/Tc = (µ0Ḣajc0n0wd/Tch0)1/4, (14)

using the temperature dependences of jc, n and h given
above.

Finally, consider the adiabatic condition, i.e., when the
instability is prevented only by the heat capacity of the
superconductor. The threshold follows then from Eq. (6)
with κ = h = 0. Using kx with l(Ha) in its shallow
penetration form, the result becomes

Hth,c =

√
2

π

cT ∗

µ0

d

w
. (15)

This expression was reported also previously18,19. Note
that the adiabatic threshold magnetic field is indepen-
dent of the field ramp rate, unlike both Hth,κ and Hth,h.
(BUT no oscillations ?)

t - t
0
 [ms]

-0.5 -0.4 -0.3 -0.2 -0.1 0

∆
T

 [
K

]

0

0.05

0.1

0.15

0.2

5 K

7 K

T
0
=9 K

FIG. 4. (Color online) Temporal variations in temperature
prior to typical avalanches at 3 different substrate tempera-
tures.

IV. NUMERICAL SIMULATIONS

To verify these theoretical predictions near onset of the
thermomagnetic instability, the set of full equations (3) -
(5) were solved numerically.22 This was carried out using
material parameters typical for films of MgB2,20,30? i.e.,
c0 = 35 · 103 J/m, κ0 = 160 W/Km3, ρn = 7 · 10−8 Ωm,
jc0 = 1 · 1011 Am−2, n0 = 50, and Tc = 39 K. The ramp
rate was set to µ0Ḣa = 600 mT/s, and the sample di-
mensions, w = 2 mm and d = 0.5 µm, were used. The
creep exponent was limited to n = 400 at low tempera-
tures. The substrate cooling parameter, not known from
measurements, was taken as h0 = 1.8 · 104 W/Km2 to
give Tth = 10 K in accordance with Eq. (14) and exper-
imental observations.31 Numerical results were obtained
for temperatures T = 3, 4, . . . , 10 K.

Shown in Fig. 3 is the threshold magnetic field plotted
as function of temperature. The full curves represent
the analytical expressions Hth,κ, Hth,h and Hth,c, while
the discrete data show the simulation results. Each data
point indicates the applied field when the first avalanche
occurs as the field increases from zero. For T = 10 K the
simulations gave no avalanche activity.

From the figure one sees that for T < 7 K, the graph
representing Hth,κ gives an excellent fit to the numerical
data. Above 7 K the data cross over to follow closely
the curve representing Hth,h. Note that the curve for
the adiabatic threshold lies far below the numerical data,
and thus, does not represent a relevant mechanism at any
temperature for the present material parameters and field
ramp rate.

Direct evidence for oscillatory behavior preceeding the
onset of avalanches is presented in Fig. 4. The figure
shows temporal fluctuations in the temperature over an
interval of 0.5 ms prior to avalanche events taking place at
3 different temperatures. The t0 is the time of avalanche
onset. The graph obtained at 9 K shows in the whole
time interval clear oscillations with one dominant fre-
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FIG. 5. (Color online) Oscillation frequencies as functions
of temperature. The discrete data represent the numerical
results.

quency. During the last 0.1 ms before t = t0 the am-
plitude is growing significantly. A quite similar behavior
is evident also in the graph obtained at T = 7 K. The
oscillations are here smaller in amplitude, and noise is
more pronounced. Neverthess, nearly harmonic oscilla-
tions are seen during the last 0.3 ms before onset, and
their frequency is larger than at 9 K. Like at 9 K the
oscillation amplitude increases towards the onset. In ad-
dition, the dc-part of the ∆T signal also increases slightly
towards time t0. At 5 K, on the other hand, the noise
dominates the behavior, and a characteristic frequency
was not found. The dc-part of ∆T increases also here
when approaching the onset.

The characteristic frequency, ω, obtained numerically
for temperatures between 6 K and 9 K are shown as de-
screte data in Fig. 5. The ω was obtained from the lo-
cation of the peak in the Fourier spectrum of the excess
temperature, ∆T prior to avalanches. The full curves
in the figure show the analytical expressions ωκ and ωh.
Evidently, the decrease in ω with increasing temperature
is following the curve for ωh(T ) extremely well.

V. DISCUSSION

Let us first compare the results with previous analyti-
cal works. According to Ref. 20, the electric field thresh-
old for non-oscillatory modes is

Eth =
T ∗

jc

(
π

2l

√
κ+

√
h

nd

)2

. (16)

In the low T limit, where we can put h = 0, we see that
Eq. (16) is a factor n higher than the oscillatory threshold
in Eq. (8). Because n is very large in many materials, this
implies that the oscillatory instability are significantly
more dangerous than the non-oscillatory instability. In
the other limit, when h = 0, Eqs. (16) and (11) coincide.

Let us then discuss the consequences of the results of
this work and its implications for experiments. First we
notice that in hard superconductor, with n → ∞, the
threshold is actually set by the adiabatic condition, Hth,c.

The same is also true in the limits Ḣa →∞, d→ 0, and
jc → 0. Second, for superconductors with finite n and
at sufficiently low Ḣa, the threshold at shallow penetra-
tion is set by Hth,κ, Eq. (9). The scaling properties are

Hth,κ ∝ d, w−3/5, j
4/5
c , n−1/5, and Ḣ

−1/5
a . With typical

temperature dependences we have Hth,κ ∝ T 4/5 at low T .
The w-scaling is consistent with the observed increase of
Hth with reduced sample width.20 It is unclear if the Ḣa-
scaling is consistent with previous experiments since Ḣa

is usually not reported in magneto-optical experiments.
Yet, that authors of Ref. 32 observed Ḣa-dependency of
avalanche activity in magnetization measurements and
recent experiments showed that high-Tc materials can
turn unstable for ramp-rates above 1 kT/s.15 Third, at
deeper penetration the threshold is determined by Hth,h,
Eq. (12). Close to Tth it diverges as

Hth,h =
djc
2π

ln

(
4Tth

Tth − T

)
. (17)

The threshold temperature of Eq. (14) scales as Tth ∝
T

3/4
c , d1/4, w1/4, j

1/4
c , n

1/4
0 , Ḣ

1/4
a , and h

−1/4
0 . This result

is not obviously in agreement with experimental works,
since they usually report a remarkable stable Tth, such
as in MgB2 where it is close to 10 K.14 Yet, an indication
of Ḣa-dependency is that Ref. 33 observed avalanches at
19 K in MgB2 films under applied current. With regards
jc, the scaling is consistent with Ref. 21, which studied
MgB2 films with anisotropic jc.

The numerical example of this work used a ramp-
rate of 600 mT/s, which is higher than what is used
in typical magneto-optical experiments. This means
that the predictions of this work should be tested
against experiments where the ramp-rate is controlled.
Also the cooling parameter, h, should be measured
on unstable superconducting films, since the value
used in this work is several orders of magnitude smaller
than in films with good thermal contact with substrate.34

Equation (14) is valid only if Tth � Tc, since the
electronic influence on the thermal parameters have
been neglected.

VI. CONCLUSIONS

In conclusion, we have derived Hth,κ, Hth,c and Hth,h

based on modes giving rise to undamped oscillations in
T̃ , H, and E at the instability threshold. The expressions
depend only on measurable material parameters and the
experimental control-parameters T and Ḣa. The oscilla-
tory modes were found to be much more unstable than
the modes considered in previous works, and this may
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explain why many material display presence of dendritic flux avalanches, even in magneto-optical imaging exper-
iments, where the external parameters vary slowly.
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