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Direct numerical simulation data of an evolving Kelvin-Helmholtz instability have
been analyzed in order to characterize the dynamic and kinematic response of
shear-generated turbulent flow to imposed stable stratification. Particular emphasis
was put on anisotropy and shear-layer edge dynamics in the net kinetic energy
decay phase of the Kelvin-Helmholtz evolution. Results indicate a faster increase
of small-scale anisotropy compared to large-scale anisotropy. Also, the anisotropy of
thermal dissipation differs significantly from that of viscous dissipation. It is found
that the Reynolds stress anisotropy increases up to a stratification level roughly corre-
sponding to Ri, = 0.4, but subsequently decreases for higher levels of stratification,
most likely due to relaminarization. Coherent large-scale turbulence structures are
cylindrical in the center of the shear layer, whereas they become ellipsoidal in the
strongly stratified edge-layer region. The structures of the Reynolds stresses are
highly one-componental in the center and turn two-componental as stratification
increases. Stratification affects all scales, but it seems to affect larger scales to a
higher degree than smaller scales and thermal scales more strongly than momentum
scales. The effect of strong stable stratification at the edge of the shear layer is highly
reminiscent of the non-local pressure effects of solid walls. However, the kinematic
blocking inherently associated with impermeable walls is not observed in the edge
layer. Vertical momentum flux reversal is found in part of the shear layer. The roles
of shear and buoyant production of turbulence kinetic energy are exchanged, and
shear production is transferring energy into the mean flow field, which contributes
to relaminarization. The change in dynamics near the edge of the shear layer has
important implications for predictive turbulence model formulations. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4922238]

. INTRODUCTION

Shear-generated turbulence is a fundamental state of fluid flow that is present in the majority
of real-life fluid dynamic systems. The ability of turbulence to mix momentum and scalar fields
profoundly impacts the global flow field characteristics. Body forces arising from density variation
due to, e.g., temperature or salinity differences, or the Coriolis force associated with an imposed
rotation, may drastically change both the spatial and componental structures of the turbulence and
thus also the overall behavior of the flow field. While the buoyancy forces associated with unstable
stratification have a tendency to increase the turbulence intensity, stable stratification and a rapidly
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rotating frame of reference both have a tendency to suppress turbulence fluctuations and even cause
relaminarization. In the latter case, both internal frictional losses and the mixing of momentum are
substantially reduced. The implications are a significantly reduced rate of conversion of turbulence
kinetic energy to internal energy (by the action of viscosity), reduced scale separation between
small and large scale turbulence, and possibly increased large-scale anisotropy.

Transport and dispersion of passive contaminants are governed by turbulence and mean flow
advection, rather than by molecular diffusion; the contaminant simply follows the large-scale
three-dimensional and time-dependent velocity field. Passive contaminant transport is therefore
expected to respond significantly to changes in the componental structure of the flow field caused
by the imposition of a stably stratified background. An analogous situation occurs for dense-gas
releases in an isothermal environment. In this case, the density variation is caused by the density
difference between the contaminant itself and the ambient air.

Regardless of origin, spatial variation of fluid density generally affects all turbulence scales of
the flow, changing the spatial and componental structure and in some cases even the rate of transfer
of kinetic energy to internal energy. These particular features make stably stratified fluid flows chal-
lenging to model, both using statistically based turbulence closures and eddy-resolving simulations
that rely on subgrid-scale models. The practical importance of stably stratified shear turbulence in
general and its relevance to contaminant transport and dispersion constitute the primary motivations
for the present study.

The componental structure of the flow is most commonly characterized by considering the
anisotropy of the turbulence, e.g., the departure from an equipartitioning of turbulence energy in
the three spatial directions. Several quantities can be derived and examined in order to analyze the
anisotropy of a turbulent flow. In the work of Smyth and Moum,! anisotropy tensors are derived
from the Reynolds stress tensor and the viscous dissipation rate tensor, among others. Investigation
of the anisotropy tensor components, the invariants, and the principal axes of these anisotropy
tensors is conducted to shed light on the anisotropy of the flow. Smyth and Moum' also consider
various spectral measures of the flow, but no examination of the vertical variations within the shear
layer is carried out.

A more straight-forward analysis of turbulence anisotropy is found in Thoroddsen and Van
Atta,> where the ratios of various components of the Reynolds stress and viscous dissipation rate
tensors are reported. Reynolds-stress correlation coefficients, cf., e.g., Kim, Moin, and Moser,’ may
also shed light on turbulence anisotropy. Lumley* demonstrates the use of the well-known “anisot-
ropy invariant map” in order to characterize the anisotropy of a tensor, whereas Kassinos, Reynolds,
and Rogers® show how the structure tensor framework, which comprises non-local information
about the flow, can reveal information about anisotropy of the turbulence dimensionality.

Pereira and Rocha® concluded that most second-order closure models inadequately reproduced
the anisotropy features of stably stratified homogeneous shear flows. The authors connected this to
the structure of the pressure-strain term, which may also be responsible for the inability to predict
turbulence flux suppression in such models.

The objectives of the present study are to characterize the dynamic and kinematic responses of
an imposed initially stably stratified background on a statistically unsteady shear-generated turbu-
lent flow. Both the smallest dissipative scales as well as the large energy-containing scales will be
considered, the latter being particularly important in contaminant transport. The spatial structure of
the turbulence is to be investigated by means of the single-point structure dimensionality tensor; the
spatial extent of the turbulence structures has direct implications for the deformation of contaminant
fields. The analyses are based on data from a Direct Numerical Simulation (DNS) of a temporally
evolving Kelvin-Helmholtz (KH) instability at relatively high Reynolds number.

Il. MATHEMATICAL MODELING

The present analysis is based on data from the DNS of the evolution of KH billows, reported
by Werne, Lund, and Fritts.” The Navier-Stokes equations for an incompressible, Newtonian fluid,
using the Boussinesq approximation to incorporate effects of density stratification, are given by
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0iit; = 0, (L
0;p
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in which i; = #;(x,t), p = p(x,t), and g = A(x,t) are the instantaneous velocity, pressure, and
temperature fields, respectively. Furthermore, p(x,?) is the fluid density, p is a reference density, v
is the kinematic viscosity, « is the thermal diffusivity, and g; = (0,0,—g) is the gravitational accel-
eration. Temporal and spatial differentiation is denoted by 0; = /9t and 9; = d/0x;, respectively,
whereas x; = {x,x2,x3} denotes the streamwise, spanwise, and vertical directions. The Boussinesq
approximation entails that p/pg = 1 — a(d — @), where « is the thermal expansion coefficient of
the fluid and @ is a reference temperature.

The velocity, pressure, and temperature fields governed by Egs. (1)-(3) can be decomposed
into mean and fluctuating parts, e.g., for the ith component of the velocity field, i;(x,t) = U;(x3,1)
+ui(x,1), where Ui(x3,1) = (dl;), x, is the mean velocity and u; is the fluctuating velocity. Here,
(*)x, x, denotes the horizontal averaging operator, which approximates the ensemble average, -), in
the processing of the DNS data.

The transport equations governing the components of the Reynolds stresses, (u;u;), and turbu-
lent heat flux, (u;0), are given by

Auius) + Ui uu ) = —((ujury0rUs + (i )0k U;) — (g ui0) + gi(u;0))

— 2v(Oku;Oru;j) +vOrOr(uint;) — Ox it juy) (@)
N—— ———

sij

L Guup) + 3uipd) + —(pdyus) + (pduuy).
00 Po

Pij

0 (u;0) + U0k (u;0) = _pi<98ip> —((uk0)0kU; + (uiur y0r®) — (k + v){Oycut; 010
0

Pig £
— O((uur0) — k(u;040) — v(00u;)) — gix(6%). (%)

P;; and G;; denote the rate of production of Reynolds stresses by shear and buoyancy forces,
respectively, whereas ;; represents the viscous dissipation rate of (u;u;). ¢;; is the pressure-strain
term, which redistributes kinetic energy among the normal components of (u;u;). P;¢ and ;¢ denote
the rate of production and rate of viscous dissipation of turbulent heat flux, respectively. Turbulence
kinetic energy, its rates of shear and buoyancy production, and its dissipation rate are defined as
k= %(uiui), P, = %P,-i, Gi = %Gii, and ¢ = %sii,respectively.

The production rates of the Reynolds stresses, temperature fluctuations, and heat fluxes are
strongly dependent on each other. Figure 1 illustrates the relations between the most dominating
interactions for stratified shear flow and how they are interconnected through their production
mechanisms. This will be discussed more thoroughly in Sec. IV C.

As part of the turbulence structure analysis, the so-called structure dimensionality tensor is
utilized. The dimensionality tensor is part of the single-point turbulence structure tensor framework
described more thoroughly in, e.g., Kassinos, Reynolds, and Rogers’ and is defined as

D;; = (0;'¥x0;¥x), (6)
in which the fluctuating vector stream function, ¥; = W;(x,t), i = 1,2,3, is governed by the Poisson
equation

(9k6k‘1’l- = —W;i. (7)

Here, w; = €;;x0;uy is the fluctuating vorticity field, with €;x being the cyclic permutation tensor.
The dimensionality tensor contains information distinctly different from the Reynolds stress
tensor; while (u;u;) gives information related to the componental structure of large-scale turbulence,
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. Py Py R
(urug)f <U1U3><G > (u10)
13
Py
P: R P R
(ugus) e (usb) —_—(6°)
Gss Gag

FIG. 1. The dynamically dominant connections between shear and buoyancy production terms in stably stratified shear flow,
cf. Egs. (4) and (5).

D,; carries information about the spatial structure of large-scale turbulence. The Reynolds stresses
largely affect how a scalar field is deformed, whereas the dimensionality of the turbulence is more
associated with the degree of the deformation. A novelty of the dimensionality tensor is that it indi-
rectly carries non-local structural information about the turbulence through the solution of Eq. (7),
despite being a one-point correlation.

In order to characterize large-scale turbulence, the Reynolds stress anisotropy tensor, b;;
= (uuj)/(urux) — 6;;/3, and the dimensionality anisotropy tensor, d;; = (0;¥Vr0;¥)/(0;Yr0;'¥i)
— 0;j/3, are used. Small-scale anisotropy will be characterized by the viscous and thermal dissipa-
tion rate anisotropy tensors, e;; = (Oxu;Okut;)/{OxuOxur) — 8;j/3 and t;; = (0;60,;0)/{0x00k0) — 6;;/3.

The second and third invariants of a trace-free, symmetric, second-order tensor can be defined
as Il = —%xi ixjpand I11, = %x,- X jkXki, respectively. These are convenient scalar measures of the
tensor x;;. /1, measures the degree of anisotropy; I/, = 0 represents an isotropic state. /11, > 0
indicates one dominating tensor component (prolate), whereas /11, < 0 implies two dominating
components (oblate) (see Figure 2).

It follows from the definitions of the invariants that, for positive semi-definite tensors, (I/in,
Ina) = (=1/3,0) and (I11yin, [ 1nx) = (—1/108,2/27). The points (0,11 n,y), (I, 1/12), and
(I max, = Inin) in the (111,—11) state space define the three vertices in the anisotropy invariant map*
shown in Figure 2.

1-component
limit

prolate

-11 L

111

isotropic limit

FIG. 2. Illustration of anisotropy invariant map. The three lines represent oblate axisymmetric turbulence, prolate axisym-
metric turbulence, and two-componental turbulence, respectively.
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To facilitate the analysis of the different axisymmetric states, the axisymmetry parameter of Lee
and Reynolds,? given by

111,.)2

LT v

will also be used. This parameter quantifies the degree of turbulence axisymmetry relative to its
realizable maximum for a given anisotropy level: A, = 1 for prolate axisymmetry, whereas A, = —1
for oblate axisymmetry.

lll. NUMERICAL MODELING

Equations (1)—(3) are solved pseudo-spectrally using a streamfunction-vorticity decomposition
of the velocity field® that automatically satisfies (1). Derivatives are computed via wavenumber
multiplication in spectral space; nonlinear terms are computed via multiplication in physical space.
Fast Fourier transforms are used to move between the two spaces. Time stepping is achieved with
the low-storage third-order Runge-Kutta method of Spalart, Moser, and Rogers.'® The domain size
is 4k X 2\ X 2\, where A is the wavelength of the most unstable eigenmode of the KH instability.
This allows the development of four KH billows, aligned in the streamwise direction, thus enabling
far better turbulence statistics than simulations encapsulating only one billow (cf., e.g., Reif et al.'").
The mesh resolution varies as the flow evolves, and the largest grid consists of 3000 x 1500 x 1500
points.

The computational domain is periodic in the two horizontal (x; and x;) directions. Fixed-
temperature, impenetrable, stress-free top and bottom boundaries are used. Initially, at t* = tUy/H
=0, the flow field consists of small perturbations and the most unstable KH eigenmode super-
posed on a background velocity field, & = [Uytanh(x3/H),0,0]. The small perturbations are initi-
ated with a 5/3-Kolmogorov spectrum and a vorticity amplitude of 0.014Uy/H. The eigenmode
initial vorticity amplitude is 0.07Uy/H. H and U, denote half the initial shear-layer depth and the
free-stream velocity, respectively. The initial temperature field is § = Sx3, where f3 is a constant.

The parameters characterizing the initial flow fields are the Richardson number, Ri
= gafSH?/ Ug = 0.05, the Reynolds number, Re = UyH/v = 2500, and the Prandtl number, Pr
= v/k = 1. Further details concerning the simulation can be found in Werne, Lund, and Fritts.”

The temporal evolution of KH billows is discussed in, e.g., Werne, Lund, and Fritts,” Fritts
et al.,"> Palmer, Fritts, and Andreassen,'® Thorpe,'* and Smyth and Moum,'® and it can be summa-
rized briefly as follows: Initial temperature (or, equivalently, density) perturbations in combination
with a mean vertical gradient of streamwise velocity lead to KH waves. The amplitude of these
waves grows, and eventually, the waves break (see Figure 3, top). The flow subsequently becomes
fully turbulent. Turbulent motion is generated by means of velocity shear caused by convective

A

Xg

FIG. 3. Contours of instantaneous vorticity magnitudes at #* =50 (top) and #* =227 (bottom). It should be noted that x3 =0
corresponds to the center of the shear layer. Cf. also Figure 4.
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FIG. 4. Non-dimensional mean velocity and mean temperature profiles, across half the shear layer, at t*=0 (------ ), 50

(——-), and 227 (—). Cf. also Figure 3.

instabilities and wave breaking. As the flow field evolves, it becomes nearly horizontally homoge-
neous (see Figure 3, bottom). The effect of the stably stratified background becomes increasingly
dominant, suppressing the turbulence intensity and eventually causing relaminarization. Weak grav-
ity waves are also present, but this phenomenon is not investigated presently. Figure 4 shows the
initial mean profiles of velocity and temperature, as well as the profiles for the two time instances
shown in Figure 3.

IV. RESULTS AND DISCUSSION

The present study addresses the net kinetic energy decay phase of the statistically unsteady
KH evolution, cf. Figure 5. During this phase, stratification increases and the turbulence becomes
horizontally homogeneous. The turbulence statistics can therefore be obtained by averaging in the
horizontal directions. In addition, all quantities symmetric about the vertical centerline, x3 = 0, are
also averaged by reflection about the symmetry axis to improve statistics.

Figure 5 shows the change in time of turbulence kinetic energy integrated across the shear
layer, k* = f kdxs/ (UgH ). In the following, three selected instances in time will be in focus (cf.
Figure 5), which roughly correspond to the early, middle, and late stages of the net energy decay

0.18f
0.16f
0.14f

0.12f

0.08r
0.06[
0.041

0.02f

00 50 100 150 200 250 300 350
t *

FIG. 5. Change of integrated turbulence kinetic energy, k* = fkdx;/(UgH), in time. The symbols mark ¢* =190, 227, and
282. The net kinetic energy decay phase implies t* > 120.
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4 4
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= T
B Bk
5 8
150 150 !
051 0.5¢ i
i ] 4 S ] R 2 3 4
(b) t* =282
FIG. 6. Ratio of turbulent production to turbulent dissipation rate across half the shear layer. Py /& (------ ), Gi /e (——-),

and (Pr +Gy)/e (—).

phase. Even though there is a net decay of turbulence kinetic energy at * = 190, a portion of the
domain exhibits positive production of turbulence kinetic energy, as shown in Figure 6(a).

Note that for the late decay stage, it is the negative rate of shear production that causes
(Pr + Gy)/e < 0, contrary to the more common case where positive shear production is countered
by buoyancy. During this phase, kinetic energy is transferred from the turbulence to the mean flow.

Figure 7 shows the vertical variation of the gradient Richardson number, Ri,, across half the
shear layer. This dimensionless number represents the ratio of buoyancy to shear forcing and is here
given by

agd®

s (B3U)* ©)
It has been shown, both theoretically'® and experimentally,'” that flows with a gradient Richardson
number less than the critical value of Ri, . = 0.25 are dynamically unstable. Gradient Richardson
numbers above this value tend to imply locally stable flow, in which the turbulence is significantly
affected by buoyancy. However, due to the spatially and temporally varying nature of stratified
turbulence, large instantaneous — or even mean — values of the gradient Richardson number at a
given position are by no means a sufficient sign of laminar flow, as long as the flow exhibits lower

Richardson numbers at other positions.

FIG. 7. Variation of the gradient Richardson number across half the shear layer at =190 (------ ), t*=227 (-—-), and
t* =282 (—). The critical Richardson number, Rig . =0.25, is indicated by a vertical line.



065106-8 Wingstedt et al. Phys. Fluids 27, 065106 (2015)

It can be observed in Figure 7 that the gradient Richardson number increases with time across
the entire shear layer and that maximum stratification occurs close to the edge of the shear layer
(x3 = 3.5H). In fact, as the mean velocity gradient tends toward zero with 3;0 # 0, Riz — oo.
Hence, buoyancy completely dominates the flow in this region. Except for the earliest time consid-
ered, Ri, > Ri, . across the entire layer.

A. Anisotropy

In laboratory experiments of decaying stratified turbulence, Thoroddsen and Van Atta® noted
that small-scale anisotropy seemed to develop faster than large-scale anisotropy. This is unexpected
in light of the common supposition that anisotropy related to stratification is imposed directly only
on the larger scales and that small-scale turbulence only indirectly is affected through the cascade
process. 81

The observation of Thoroddsen and Van Atta> was made in the absence of mean shear, whereas
in KH flow mean shear initially dominates and remains important throughout the entire evolution.
Figure 8 shows the second invariants of the anisotropy tensors of Reynolds stress (1), viscous
dissipation rate (/1.), thermal dissipation rate (//;), and dimensionality (/1;) at different times. It
can be observed that the relatively faster increase in viscous dissipation rate anisotropy also occurs
in sheared stratified flow. Furthermore, it can be observed that the increase in anisotropy is larger
near the edge of the shear layer, where the gradient Richardson number is higher. At the layer
edge, where the stratification locally is strong, the dissipation rate anisotropy actually surpasses the
Reynolds stress anisotropy. For Ri, < Ri, ., the rate of viscous dissipation is almost isotropic.

Componental structure information is carried by both the second invariants of the Reynolds
stress anisotropy tensor (/1) and the viscous dissipation rate anisotropy tensor (/1,.). In the center of

4 4
35 35r & §FTT---l
3t al
25 25t
= | o
~ 2« ~ 2
el 1 [2ed
8 H 8
1.5 150
1h 1
0.5, 0.5} |
% 01 02 03 04 05 06 07 08 % o1 o0z 08 04 05 06 07 08
—IT /|11 i) —I1/|ILin|
(a) t* =190 (b) ¢t* =227
4—
ssp <3 e
3l
25
T
~ 2
3
g
15f
1k
o5
0 H ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08
—II /|11y
(c) t* =282
FIG. 8. Second invariants of the Reynolds stress (—), viscous dissipation rate (——-), thermal dissipation rate (- - - - ), and

dimensionality (—s—) across half the shear layer. |I Inyin| = 1/3.
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the layer, both large- and small-scale anisotropy increase with time. Even if the level of large-scale
componental anisotropy always exceeds that of the smaller scales, the small-scale componental
anisotropy has a larger percentage increase with time.

As seen in Figure 8(a), the second invariant of the thermal dissipation anisotropy tensor (/1)
differs greatly from 7/, even though they both represent small scale anisotropy. /1, is much more
anisotropic. As time evolves, it is evident that the anisotropy of viscous dissipation becomes more
similar to the anisotropy of the thermal dissipation in the edge region, whereas the difference in
the center remains approximately the same. Generally, these results suggest that buoyancy has a
stronger impact on local anisotropy than does mean shear in the present flow configuration. This is
in accordance with the theoretical results of Reif and Andreassen,”® which suggest that only for very
small gradient Richardson numbers (Ri, < 1) can buoyancy effects on local isotropy be ignored in
the presence of mean shear.

Figure 8 also reveals an apparent paradox, which is most prominent for the larger scales:
As stratification increases in time, the anisotropy clearly increases across the shear layer. In the
region x3 < 2.5H, this is consistent with a similar trend of increasing anisotropy with coincident
increasing stratification as one moves closer to the edge region. However, close to the layer edge
(x3 2 2.5H), a reversal of this relationship is evident; increased stratification (cf. Figure 7) is
accompanied by a sudden decrease in anisotropy! This pattern holds for every time instance, albeit
with a slight variability in the vertical position at which the anisotropy begins to subside.

The results also suggest that in the net decay phase, the location of maximum Reynolds stress
anisotropy consistently occurs at 0.3 < Ri, < 0.45, as shown in Figure 9. For late times (#* 2 250),
the values are close to 0.4. That is, up to a certain level of stratification (Ri, ~ 0.4) anisotropy
increases, but for stronger levels of stable stratification, anisotropy begins to decrease.

Figures 5 and 6 show that the turbulence kinetic energy decreases rapidly and that the turbulent
dissipation rate significantly exceeds the turbulent production rate when stratification increases.
This indicates relaminarization. Since the anisotropy primarily is caused by the rate of production
term, absence of this mechanism is associated with “return to isotropy.”?>' Hence, the combination
of reduced net production and rapidly decreasing turbulence kinetic energy levels indicates that
relaminarization effects are responsible for the reduced anisotropy as Ri, > 0.4.

Interestingly, in the case of wall-bounded stratified channel flow, Garcia-Villalba and Del
Alamo?? display a similar trend related to density fluctuations; as the stratification level increases,
the normalized root-mean-square density fluctuations increase up to a certain level. However, for
very strong levels of stratification, the fluctuations suddenly decrease again. The corresponding
value of the critical gradient Richardson number agrees rather well with that found presently. In

0.25
1
~ 02 |
-S:
g A
~
= 0.15} ot :
& ol
= ) Q.i'
S .
~ S /’
D g/
\;,'( 0.1F Qé, ./ 8
S N ,.
g F e ®
0.05} 0,.. |
o ‘ ‘ ‘ ‘
0 0.1 02 03 0.4 05
Rig

FIG. 9. Maximum values of the second invariant of the Reynolds stress anisotropy tensor within the shear layer (x3 <3.5H)
vs. the corresponding gradient Richardson number. Circles represent different times in the net kinetic energy decay phase,
with lighter color implying later times.
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their paper, Garcia-Villalba and Del Alamo®? use internal gravity waves as an explanation for
altered density fluctuations in the channel core region, but it is unclear whether they mean the
increased fluctuations in general or the particular sudden decrease at higher stratification levels. If
it is the latter, an explanation is lacking of how the presence of stronger internal gravity waves can
reduce the density fluctuation levels. In the present case, gravity waves are indeed dominant in the
layer edge, but such waves (quantified by, e.g., the Brunt-Viisild frequency) are significantly less
correlated with 17, and Rig.

The second invariant of the dimensionality tensor, /1;, expresses the deviation from spherically
coherent flow structures (in an average sense). It is seen, from Figure 8, that the magnitude of 71,
remains almost constant in time and space, except for the final time instance, where a notable peak
appears near the edge region. This peak coincides with the peak in /1.

Another interesting feature of the anisotropy regards the turbulence axisymmetry, the state of
which can be inferred from the axisymmetry parameter (Figure 10). For the Reynolds stress anisot-
ropy tensor, A, = 1 indicates a one-componental (1C) axisymmetric state and A, = —1 indicates
a two-componental (2C) axisymmetric state. Aside from the physical implications related to the
componentality of the flow, the state of axisymmetry may be an issue in turbulence modeling.

The edge layer seems to be characterized by a 1C state, except for one narrow band in the
immediate vicinity of the edge (x3 = 3.5H), where the Reynolds stresses tend towards an increas-
ingly more 2C state. Inspection of the Reynolds stress components at the latter location reveals that
(u%) > (u%), meaning that the dominant Reynolds stresses lie in the x;-x3 plane. This may indicate
increased relative vertical motion near the edge as the stratification level increases. However, the
Reynolds stresses are 1C in the center region, most likely associated with jet-like motion. Here,
(u%)/ (u%) decreases with time and thus also with increased stratification levels. In fact, by looking

(c) t* =282

FIG. 10. Axisymmetry parameter values for Reynolds stress (—), viscous dissipation rate (——-), thermal dissipation rate
[CEREES ), and dimensionality (—s—) across half the shear layer.
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at the values of (u%)/ (u%) against Ri, for all instances in time, a similar critical point is found as for
the second invariants (cf. Figure 9); up to Ri, ~ 0.4, relative vertical motion decreases, whereas for
larger values of the gradient Richardson number, relative vertical motion increases.

For the other anisotropy tensors (e;;, t;;, and d;;), the value of the axisymmetry parameter
have a different physical interpretation. A, = 1 implies two-dimensional (2D) structures, whereas
A, = —1 implies one-dimensional (1D) structures. The dissipative velocity scales change from 1D
to 2D in the center region as stratification increases. Near the edge, the small scales are always 2D,
reminiscent of near-wall structures. The dissipative thermal scales are 2D in the entire shear layer,
but more so near the edge, meaning that the vertical variations of temperature fluctuations are much
more pronounced than the horizontal variations.

The 2D axisymmetry levels of the dimensionality are also seen to peak around x3 ~ 2.5H for
t* = 282, cf. Figure 10(c). At earlier times, there is a low degree of axisymmetry (i.e., |A4| < 1) at
this location. Closer to the centerline and at the edge, the dimensionality is generally highly 1D for
all times. However, this does not necessarily imply that the structures at these locations are equal in
every respect; on the contrary, the centerline structures are relatively shorter in the streamwise direc-
tion than the structures near the edge, which are more likely to resemble the coherence of near-wall
streaks. In combination with information about the individual dimensionality tensor components, cf.
Figure 11, these results reveal structural information about the flow.

In the center region, the coherence of the Reynolds stresses is organized in ellipsoids which are
stretched in the streamwise direction. Initially, these structures are relatively circular in the x,-x3
plane, but eventually they become more compressed in the vertical direction. Closer to the edge
(1.5H 5 x3 < 2.5H), the ellipsoids are much “flatter” for all times, and this feature is also exagger-
ated with time. At the edge (x3 = 3.5H), however, the data imply 1D structures. This information
is included in Figure 11 as conceptual illustrations of the spatial extent of the turbulence structures
for three different vertical locations at t* = 282. The turbulence structures are approximately parallel
(0°=20° tilting) to the x;-axis for all times and positions.

B. Temporal scales

The fluctuating velocity and temperature fields can both be associated with specific length and
time scales. For the velocity field, the turbulent time scale is given by T = k/g, whereas for the
temperature fluctuations, an appropriate time scale is Ty = (0%)/gg. Here, gy = 2k(0;00;6) is the
thermal dissipation rate. These scales represent the larger scales of turbulent motions.

For the turbulent velocity field, the smallest time scale, i.e., the Kolmogorov time scale, is
given by 7 = v/v/e. However, to the knowledge of the authors, no equivalent smallest time scale
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for the temperature field have been defined. The commonly used Batchelor scale is unsuitable, as
it implicitly assumes £¢ ~ & and is relevant mainly for Pr > 1 (Wyngaard??). The authors therefore
propose to use a thermal time scale given by 7y = «!/*/(g9g%a*)!/*.

The temporal scales associated with the fluctuating velocity and temperature fields are shown in
Figure 12. At the edge of the layer, the difference between the two large scales generally increases
with increased stratification, the thermal scale being the largest. In the inner region of the shear
layer, on the other hand, the ratio between the scales is closer to unity for all times, with relatively
small variations in the vertical direction. Stratification appears to affect the large thermal scale to a
higher degree than it affects the large turbulence scale.

The small scales become increasingly similar with time. The thermal scale is slightly larger
in the center of the layer, but this situation is reversed at the outer edge, where stratification is
larger. It thus seems that for a certain level of stratification, the small velocity scale will surpass the
small thermal scale. There is generally little vertical variation in the small scales across the layer, in
comparison to the large scales.

The scale separation between large and small velocity scales evolves differently in the center
region than at the layer edge; in the former case, scale separation decreases with time, consistent
with the monotonic reduction of the Reynolds number. At the edge of the layer, however, the scale
separation generally increases at later time instances, due to the increase of the large time scale
at x3 ~ 2.5H. In contrast, the thermal scale separation remains Q(10) in the center region for all
times considered, but the separation increases in the layer edge, where the large scale increases
significantly. These results corroborate the notion that stratification affects larger scales to a higher
degree than it affects smaller scales.

Figure 13 shows the variation of the ratio of mechanical to thermal time scales, R = T/T,
across the shear layer. This ratio is commonly used to device a simple model for &g, and in the
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FIG. 13. Ratio of mechanical to thermal time scale, R = (k/£)({(6%)/£4)”", across half the shear layer at £*=190 (- - - - -- ),
t*=227 (——-), and t* =282 (—).

presence of a uniform mean temperature gradient without mean shear, it is found to be a constant
equal to approximately 1.5 (Sirivat and Warhaft®*). As seen in Figure 13, the ratio seems to have a
fairly constant value of R = 0.85 in the inner, shear-dominated region, but as stratification increases,
the ratio significantly decreases at the edge of the layer. The imposition of stratification thus seems
to affect the velocity and temperature fields differently. For decaying temperature fluctuations in
grid generated turbulence, R = m/n, where m and n are the exponents of the power-law decays for
(#%) and k, respectively. Even though the value of the mechanical to thermal time scale ratio found
here differs from that found by Sirivat and Warhaft,?* the relation between m and n still gives a
good approximation of R despite the presence of shear. Improved models for the thermal dissipation
might take stratification into account directly, cf., e.g., Weinstock® and Fossum, Wingstedt, and
Reif.?

C. Layer-edge physics

The physics in the strongly vertically inhomogeneous shear-layer edge differs significantly
from the inner region which remains almost homogeneous. The observation of large anisotropies,
even on smaller scales, poses significant challenges for turbulence models. As an example, the
most common dissipation rate models of today assume local isotropy. Figure 14 shows the ratio of
turbulence to mean flow time scale, which should be Sk/e < 1 for the local isotropy assumption
to hold.20 Clearly, this is not satisfied in the current simulation. From considerations in Durbin
and Reif,”” pp. 170-171, it can be shown that for homogeneously sheared turbulence in equilib-
rium, Sk/e =~ 5, which is also the condition for which most commonly used Reynolds-Averaged
Navier-Stokes turbulence models are calibrated. However, from Figure 14, it is seen that when strat-
ification dominates, the value of Sk/e becomes much larger. Sk/e > 1 implies that the turbulence
time scale is much larger than the mean flow time scale, indicating a laminarization process which
might be difficult to capture with contemporary turbulence models.

Figure 15 shows the variation of the Reynolds stress components across the shear layer. Con-
trary to near-wall behavior (cf., e.g., Moser, Kim, and Mansour?®), the figure shows that as the edge
of the shear layer is approached, (u%) / (u%) —» 0. Furthermore, it can be observed that momentum
flux reversal occurs in the edge layer, i.e., that (uju3) changes sign. This phenomenon becomes
more pronounced as the stratification increases, and it has several implications that will be discussed
below.

In order to provide an explanation of the flux reversal, a first step is to look at the rate of
production of (ujus), i.e., P13 = P;3+ Gz = —<u§>c’)3U1 + ag(u10). From Figures 15 and 16, it is
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FIG. 14. Turbulence to mean flow time scale ratio, Sk /&, across half the shear layer at =190 (------ ), t*=227 (——-),
and t* =282 (—).

evident that whereas (u%)/Zk generally increases near the edge, (u10)/+/{u;0){u;0) decreases and
eventually even changes sign. From an inspection of $;3 (figure not shown here), it is seen that total
production of (u;u3) becomes negative near the layer edge. Unless the shear component is supplied
with energy via the pressure-strain term, it would rapidly change sign and thus eventually cause
relaminarization.

A consequence of the momentum flux reversal concerns the turbulence kinetic energy. It
can be found that the total production of turbulence kinetic energy, i.e., the sum of both shear
and buoyancy production terms, Px and Gy, respectively, reduces to Py = Py + Gy = %Pn + %G33
= —(uju3)0:U; + ag(usz0) for the present case. Hence, it can be seen that reversal of (uju3) leads
to a change of role of the shear production part of #;. Normally, both in neutral flows and as
seen presently in the layer center (x3 < 2H) in Figure 6, shear produces turbulence kinetic energy,
whereas buoyancy acts to decrease the energy. At the edge, however, shear actually seems to remove
energy from the fluctuating field. Similarly, the buoyancy part of the production of turbulence
kinetic energy, Gy, also changes sign near the layer edge, as a consequence of heat flux reversal

0.5f

82

1 1.2

FIG. 15. Normalized Reynolds stress components across half the shear layer for #* =282. (u%) /2k (—), (u%) /2k (——-), and
(uqus)/2k (------ ). The zero Reynolds stress level is marked by a vertical line.
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FIG. 16. Heat flux components across half the shear layer for *=282. (u;0)//{ur0)ur0) (—), (u20)//{ur0)u.6)
[CEREES ), and (u30) /+/{ur0){u0) (——-). The zero heat flux level is marked by a vertical line.

(i.e., the sign change of (u30)), cf. Figure 16. In conclusion, the shear and buoyancy contributions to
the turbulence kinetic energy production change roles near the edge of the KH layer.

The evolution of turbulence production can be analyzed, for instance, by looking at the ratio
of total turbulence kinetic energy production to turbulence dissipation rate (i.e., Px/¢€) at different
times (see Figure 6). This ratio is found to be close to or below zero and decreasing with time
near the layer edge, suggesting a permanent decay of turbulence, which increases with increased
stratification. In the layer center, Pr/e < 1 at later times, implying turbulence decay locally in this
region. In the outer edge, however, the production-dissipation ratio is much larger than unity, solely
due to buoyant production, owing to large vertical heat flux, (u30).

Finally, some attention should be given to the pressure-strain tensor, as this represents the
crucially important mechanism by which energy is redistributed among the normal components
of the turbulent stress tensor. A straight-forward inspection of Figure 17 shows that for parts of
the domain, the sign of $;; = P;; + G| = Py is the same as the sign of the pressure-strain term,
¢11. This is irregular and not captured by common pressure-strain models, such as the simple

FIG. 17. Pressure-strain components and total production of streamwise Reynolds stresses across half the shear layer for
t*=282.¢11 (—), ¢ (———) P33 (-~ -+ ), and P11+ Gy (——).
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isotropization of production (IP) model.? It is interesting to note that in the region where (u%) is
largest, around x3 ~ 1.5H — 2H (cf. Fig. 15), the pressure-strain correlation acts as a source term
together with #;.

The vertical pressure-strain component, ¢33, changes sign for x3 > 1.5H, contrary to common
free shear flow behavior. This is similar to what is observed in the near-wall region of wall-bounded
flows,?® corroborating the notion that strong stable stratification may in some ways affect turbulence
like an impermeable wall.

V. CONCLUDING REMARKS

DNS data of an evolving KH instability have been analyzed, with particular emphasis on anisot-
ropy and shear-layer edge dynamics in the net kinetic energy decay phase.

The turbulence decay is associated with a negative rate of shear production in parts of the turbu-
lent layer, implying kinetic energy transfer from the turbulence to the mean flow. It is found that
momentum flux reversal, as well as heat flux reversal, is present in parts of the domain. This is related
to a change of roles of shear and buoyancy production of turbulence kinetic energy, with the former
actually transferring energy into the mean flow field, which may lead to relaminarization.

The results indicate that the faster increase of small-scale anisotropy relative to large-scale anisot-
ropy, reported earlier? for shear-free stratified flow, also holds in the case of sheared stratified flow.
However, the anisotropy of thermal dissipation (which is also a measure of small-scale anisotropy)
differs significantly from that of viscous dissipation; the second invariant of the former exceeds that
of the latter.

Curiously, the present analysis shows that the Reynolds stress anisotropy increases only up to a
certain level of stratification, corresponding roughly to Ri, ~ 0.4. For even stronger stratification, the
anisotropy begins to decrease. It has been shown that a likely explanation for this is relaminarization.

The coherent structures of the large-scale turbulence are generally cylindrical in the center of
the shear layer. In the layer edge, the structures become increasingly compressed into ellipsoids with
time. The Reynolds stresses are highly 1C in the entire layer, except for a narrow region at the layer
edge, where it turns 2C as stratification increases. The region of 2C Reynolds stresses corresponds to
the region where Ri, > 0.4. The variation of Reynolds stress anisotropy across the layer has important
consequences for dispersion modeling; Gaussian dispersion models commonly utilize the velocity
variance to estimate the deformation of contaminant clouds.’® The variance is thus important for
estimating the spread of a Gaussian puff as well as the decay of peak concentration. Additionally,
the dimensionality tensor could be used to improve dispersion modeling by incorporating the state
of large-scale structures.

As turbulence decays, the separation between the large and small velocity time scales is reduced
in the inner part of the shear layer. Closer to the layer edge, the large time scale — and hence the scale
separation — increases. In the present study, a time scale suitable for thermal dissipation is proposed.
The thermal scale separation increases in the layer edge, but it remains the same in the center region
throughout the decay phase. Stratification has a more profound effect on the larger scales, and it seems
to affect the thermal scales more strongly than the momentum scales.

A mechanical to thermal time scale ratio of R ~ 0.85 is observed in the shear-dominated re-
gion, i.e., approximately half of the reported value®* for shear-free flow with a uniform temperature
gradient.

The dissipation anisotropy and pressure-strain components are highly reminiscent of how they
behave near solid walls. The latter, in particular its association with a change of sign of ¢33, sug-
gests that the imposition of strong stable stratification mimics the non-local pressure effects of an
impenetrable wall. On the other hand, the Reynolds stresses show little resemblance to their near-wall
behavior, which implies that the kinematic blocking effect of walls is not emulated by the imposed
stable stratification. Consequently, turbulence models employed in stably stratified flows ought to be
non-local to incorporate important effects of the stratification. Since the dimensionality tensor resem-
bles its near-wall behavior, models based on this non-local single-point quantity might be beneficial.

In conclusion, there are important indicators of a significant change in the dynamics and
kinematics near the strongly inhomogeneous KH layer edge, which has implications for predictive
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turbulence model formulations. For example, large dissipation anisotropies generally imply that the
local isotropy assumption is invalid, meaning that common dissipation rate models may not suffice.
Moreover, local pressure-strain models may need to account for non-local effects, cf., e.g., Durbin
and Speziale.?!

ACKNOWLEDGMENTS

This work has been funded in part by the Research Council of Norway, through Project No.
NFR-214881.

!'W. D. Smyth and J. N. Moum, “Anisotropy of turbulence in stably stratified mixing layers,” Phys. Fluids (1994-present) 12,
1343-1362 (2000).

2'S. Thoroddsen and C. Van Atta, “The influence of stable stratification on small-scale anisotropy and dissipation in turbu-
lence,” J. Geophys. Res.: Oceans (1978-2012) 97, 3647-3658, doi:10.1029/91JC02727 (1992).

3J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low Reynolds number,” J. Fluid
Mech. 177, 133-166 (1987).

4J. L. Lumley, “Computational modeling of turbulent flows,” Adv. Appl. Mech. 18, 123-176 (1979).

5S. C. Kassinos, W. C. Reynolds, and M. M. Rogers, “One-point turbulence structure tensors,” J. Fluid Mech. 428, 213-248
(2001).

6 J. Pereira and J. Rocha, “Prediction of stably stratified homogeneous shear flows with second-order turbulence models,”
Fluid Dyn. Res. 42, 045509 (2010).

7J. Werne, T. Lund, and D. Fritts, “CAP phase II simulations for the air force HEL-JTO project: Atmospheric turbulence
simulations on NAVO’s 3000-processor IBM P4+ and ARL’s 2000-processor intel xeon EM64T cluster,” in (IEEE,
2005), pp. 100-111.

8 M. Lee and W. Reynolds, “Numerical experiments on the structure of homogeneous turbulence,” Thermosciences Division
Report No. TF-24, 1985.

9 K. Julien, S. Legg, J. McWilliams, and J. Werne, “Rapidly rotating turbulent Rayleigh-Bénard convection,” J. Fluid Mech.
322, 243-273 (1996).

10p R. Spalart, R. D. Moser, and M. M. Rogers, “Spectral methods for the Navier-Stokes equations with one infinite and two
periodic directions,” J. Comput. Phys. 96, 297-324 (1991).

11 B. Reif, J. Werne, @. Andreassen, C. Meyer, and M. Davis-Mansour, “Entrainment-zone restratification and flow struc-
tures in stratified shear turbulence,” in Proceedings of the Summer Program (Center for Turbulence Research, Stanford
University, 2002).

12, C. Fritts, T. L. Palmer, @. Andreassen, and I. Lie, “Evolution and breakdown of Kelvin—Helmholtz billows in stratified
compressible flows. Part I: Comparison of two- and three-dimensional flows,” J. Atmos. Sci. 53, 3173-3191 (1996).

13T L. Palmer, D. C. Fritts, and @. Andreassen, “Evolution and breakdown of Kelvin—Helmholtz billows in stratified com-
pressible flows. Part II: Instability structure, evolution , and energetics,” J. Atmos. Sci. 53, 3192-3212 (1996).

4. Thorpe, “On the Kelvin—Helmbholtz route to turbulence,” J. Fluid Mech. 708, 1-4 (2012).

I5W. D. Smyth and J. N. Moum, “Ocean mixing by Kelvin-Helmholtz instability,” Oceanography 25, 140-149 (2012).

16 3 W. Miles, “On the stability of heterogeneous shear flows,” J. Fluid Mech. 10, 496-508 (1961).

173 Rohr, E. Itsweire, K. Helland, and C. Van Atta, “Growth and decay of turbulence in a stably stratified shear flow,” J. Fluid
Mech. 195, 77-111 (1988).

18 3. Dougherty, “The anisotropy of turbulence at the meteor level,” J. Atmos. Terr. Phys. 21, 210-213 (1961).

19R. Ozmidov, “On the turbulent exchange in a stably stratified ocean,” Izv., Acad. Sci., USSR, Atmos. Oceanic
Phys. 1,861-871 (1965), available at http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&
Ttemid=78.

20 B. P. Reif and @. Andreassen, “On local isotropy in stratified homogeneous turbulence.” STAM J. Appl. Math. 64, 309-321
(2003).

21 R. W. Johnson, Handbook of Fluid Dynamics (CRC Press, 1998).

22 M. Garcia-Villalba and J. C. Del Alamo, “Turbulence modification by stable stratification in channel flow,” Phys. Fluids
(1994-present) 23, 045104 (2011).

23 ). C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press, 2010).

24 A. Sirivat and Z. Warhaft, “The effect of a passive cross-stream temperature gradient on the evolution of temperature variance
and heat flux in grid turbulence,” J. Fluid Mech. 128, 323-346 (1983).

25 J. Weinstock, “Energy dissipation rates of turbulence in the stable free atmosphere,” J. Atmos. Sci. 38, 880883 (1981).

26 H. Fossum, E. Wingstedt, and B. Reif, “A model for the viscous dissipation rate in stably stratified, sheared turbulence,”
Geophys. Res. Lett. 40, 3744-3749, doi:10.1002/grl.50663 (2013).

27 P. A. Durbin and B. P. Reif, Statistical Theory and Modeling for Turbulent Flows (John Wiley & Sons, 2011).

28 R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Re = 590,” Phys.
Fluids 11, 943-945 (1999).

29 B. E. Launder and N. Shima, “Second-moment closure for the near-wall sublayer-development and application,” ATAA J.
27, 1319-1325 (1989).

30 7. D. Wilson and B. L. Sawford, “Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere,”
Boundary-Layer Meteorol. 78, 191-210 (1996).

31'P. Durbin and C. Speziale, “Local anisotropy in strained turbulence at high Reynolds numbers,” J. Fluids Eng. 113, 707-709
(1991).


http://dx.doi.org/10.1063/1.870386
http://dx.doi.org/10.1029/91JC02727
http://dx.doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1017/S0022112087000892
http://dx.doi.org/10.1016/s0065-2156(08)70266-7
http://dx.doi.org/10.1017/S0022112000002615
http://dx.doi.org/10.1088/0169-5983/42/4/045509
http://dx.doi.org/10.1017/S0022112096002789
http://dx.doi.org/10.1016/0021-9991(91)90238-G
http://dx.doi.org/10.1175/1520-0469(1996)053%3C3173:EABOKB%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1996)053%3C3192:EABOKB%3E2.0.CO;2
http://dx.doi.org/10.1017/jfm.2012.383
http://dx.doi.org/10.5670/oceanog.2012.49
http://dx.doi.org/10.1017/S0022112061000305
http://dx.doi.org/10.1017/S0022112088002332
http://dx.doi.org/10.1017/S0022112088002332
http://dx.doi.org/10.1016/0021-9169(61)90116-7
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://www.ocean.ru/index2.php?option=com_docman&task=doc_view&gid=598&Itemid=78
http://dx.doi.org/10.1137/S0036139903421559
http://dx.doi.org/10.1063/1.3560359
http://dx.doi.org/10.1063/1.3560359
http://dx.doi.org/10.1017/S0022112083000506
http://dx.doi.org/10.1175/1520-0469(1981)038%3C0880:EDROTI%3E2.0.CO;2
http://dx.doi.org/10.1002/grl.50663
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.1063/1.869966
http://dx.doi.org/10.2514/3.10267
http://dx.doi.org/10.1007/BF00122492
http://dx.doi.org/10.1115/1.2926540

