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[1] A model for the turbulence dissipation rate in stably
stratified shear turbulence is developed and validated. The
functional dependence of the model is derived from first
principles and it represents a conceptually new approach in
that it depends on the background temperature field rather
than on the fluctuating velocity field. This novel feature
makes the proposed model a viable candidate for dissi-
pation rate estimates in measured real-life flows. Direct
numerical simulation data are used for a priori assessment
of the proposed model. It is demonstrated that the proposed
model performs very well, particularly in cases where the
background stratification becomes dynamically important.
Also, a generalized expression for the mixing coefficient has
been rigorously derived from first principles assuming local
isotropy of incompressible turbulent flows. The mixing
coefficient is shown to depend on the Prandtl number
and values are in correspondence with previous studies.
Citation: Fossum, H. E., E. M. M. Wingstedt, and B. A. P.
Reif (2013), A model for the viscous dissipation rate in stably
stratified, sheared turbulence, Geophys. Res. Lett., 40,
doi:10.1002/grl.50663.

1. Introduction
[2] The viscous dissipation rate of turbulence kinetic

energy, ", is an important property of turbulent flows. It
physically represents the conversion of kinetic energy into
thermal energy due to viscous forces. The dissipation rate of
turbulence kinetic energy is frequently used to characterize
the dynamics of turbulence, e.g., in connection with energy
transfer across the inertial subrange and for length and time
scale characterization of the flow.

[3] Atmospheric flows are usually affected by stratifica-
tion due to temperature variations, which significantly alters
the intensity and structure of the flow field. In stably strat-
ified flows, the buoyancy force tends to reduce turbulence
intensities and the associated mixing, whereas in unstable
flows, buoyancy acts to enhance turbulence by increasing the
vertical momentum exchange.

[4] Because of the directional preference of buoyancy, it
is clear that the energetic scales of motion in a stratified, tur-
bulent flow are anisotropic. Ever since Kolmogorov [1941],
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it has been argued that, at least for high Reynolds numbers,
directional information is lost as energy propagates from the
large to the small scales of turbulence across the inertial sub-
range. Hence, anisotropy on the large scales will not result
in small-scale anisotropy. However, for the last decades, evi-
dence against this belief has grown steadily, as discussed in
more detail by, e.g., Wyngaard [2010, p. 319].

[5] In the context of stratified shear flow, many authors
[e.g., Yamazaki and Osborn, 1990; Thoroddsen and Van
Atta, 1992; Smyth and Moum, 2000] currently hold the
view that there exists a certain buoyancy Reynolds num-
ber, defined as Reb = "/�N2, where N is the Brunt-Väisälä
frequency, below which some degree of anisotropy prevails
even at the dissipative scales. Reif and Andreassen [2003]
have theoretically shown that the concept of local isotropy
is formally inconsistent with the Navier-Stokes equations
in homogeneously sheared turbulent flows affected by
stable stratification.

[6] In the laboratory setups and atmospheric field trials,
measurements of fluctuating velocity gradients are limited
to a few components only. Direct access to the dissipation
rate is therefore only available in direct numerical simula-
tions (DNS) of canonical flow problems. Although the DNS
approach is limited to fairly low Reynolds numbers, it nev-
ertheless has become a very valuable research tool in order
to elucidate the physical characteristics of turbulent fluid
motion. In order to provide reasonable estimates of the rate
of viscous dissipation in real-life flows, empirical models
based on measurable quantities are therefore needed.

[7] Dissipation rate models can be grouped into two dif-
ferent categories; algebraic and integral models. The latter
kind of estimates are based on, for instance, spectra or
structure functions [e.g., Limbacher, 2010; Xu and Chen,
2012]. The present study is concerned with the former class
of models.

[8] One of the most commonly used algebraic formu-
las is based on the assumption of isotropic turbulence
[Taylor, 1935]. This enables the dissipation rate to be com-
puted using only one (out of nine) velocity gradient correla-
tions. One inherent limitation of these models is, however,
that they do not depend on the temperature field which
becomes dynamically important in stratified turbulence.

[9] As a consequence of the anisotropic nature of strati-
fied turbulence, Thoroddsen and Van Atta [1992] suggested
that more refined dissipation rate estimates should utilize the
Brunt-Väisälä frequency in order to account for stratifica-
tion. Crude estimates of this kind had already been discussed
by Weinstock [1981]. Another way of implicitly allowing for
stratification is to adopt the assumption of local axisymme-
try [Batchelor, 1946], which is the basis for models such as
that by George and Hussein [1991]. Although these mod-
els are based on a sound physical basis, they require too
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many components of the dissipation rate, i.e., h@kui@kuii, to
be measured, which makes these models a less desirable
choice in real-life flows.

[10] A DNS of a Kelvin-Helmholtz instability in a sta-
bly stratified flow was reported by Werne et al. [2005]. This
statistically unsteady flow simulation provides turbulence
statistics which can be used to calculate both dissipation rate
estimates and the true value of the dissipation rate. In the
present paper, a new model for the dissipation rate in a sta-
bly stratified environment is proposed and compared to two
existing algebraic turbulence dissipation rate models, and the
DNS data of Werne et al. [2005].

2. Mathematical Modeling
2.1. Fundamental Equations

[11] The present analysis is based on the dynamical
equations governing single-point correlations in sheared tur-
bulent flows of an incompressible Newtonian fluid. The
Boussinesq approximation is invoked to account for the
imposition of density stratification. The equations governing
conservation of mass, momentum, and energy are given by

@i Qui(x, t) = 0, (1)
@t Qui(x, t) + Quj(x, t)@j Qui(x, t)

= –
@i Qp(x, t)
�0

+ �@j@j Qui(x, t) +
�(x, t)
�0

gi, (2)

@t Q�(x, t) + Quj(x, t)@j Q� (x, t)

= �@j@j Q�(x, t) + 2
�

cv
Qsij(x, t)Qsij(x, t), (3)

where Einstein’s summation convention has been used. Here
Qui(x, t), Qpi(x, t), and Q� (x, t) denote the instantaneous velocity,
pressure, and temperature fields, respectively. �0 is a con-
stant reference density, and Qsij = 1

2 (@j Qui(x, t) + @i Quj(x, t)) is
the instantaneous rate-of-strain tensor. Spatial and temporal
differentiation are denoted @i = @/@xi and @t = @/@t, respec-
tively. Gravitational acceleration in the xi direction is gi,
whereas �, �, and cv represent the kinematic viscosity, ther-
mal diffusivity, and specific heat capacity, respectively. The
Boussinesq approximation reads �(x, t)/�0 = (1 – ˇ( Q�(x, t) –
�0)), where ˇ = 1/�0 defines the thermal expansion coeffi-
cient, and �0 is a reference temperature. x = [x1, x2, x3] and
t refer to spatial and temporal coordinates, respectively.

[12] The dependent variables (Qui, Qpi, and Q�) can with-
out loss of generality be decomposed into a mean and
a fluctuating part, e.g., for the velocity field, Qui(x, t) =
Ui(x, t) + ui(x, t). Here Ui(x, t) = hQui(x, t)i denotes the ensem-
ble averaged velocity, whereas ui(x, t) is the corresponding
fluctuating field.

[13] By utilizing this decomposition, the equation govern-
ing the dissipation rate "i� (x, t) = (�+�)h@j�@juii of turbulent
heat flux, hui�i, can now be rigorously derived from (1)–(3).
The result can be written as

@t"i� + Uk@k"i� = –"k�@kUi – 2h@m�@kuii@mUk

+ 4
�

cv
h@mui@mskjiSkj

+ (� + �)[huk@m�i@k@mUi + huk@muii@k@m�]

–
1 + Pr

2

�
1
Pr
"ik@k� + ˇgi"�

�
+ Fi� , (4)

where the independent variables are omitted for simplicity.
Here skj(x, t) and Skj(x, t) denote the fluctuating and averaged

rate-of-strain tensors, respectively. Pr = �/� is the molecular
Prandtl number, Fi� (x, t) represents correlations of higher-
order derivatives of the fluctuating velocity and temperature
fields, and "ij(x, t) = 2�h@kui@kuji is the viscous dissipation
rate tensor [cf. Reif and Andreassen, 2003]. Contraction of
"ij(x, t) yields twice the viscous dissipation rate of turbulence
kinetic energy, i.e., " = 1

2"ii. The thermal dissipation rate is
given by "� = 2�h@i�@i�i.

2.2. Dissipation Rate Modeling
2.2.1. Locally Isotropic Limit

[14] In the limit of isotropic turbulence, all statistical cor-
relations of the fluctuating velocity and temperature fields
must display invariance to arbitrary reflections and rota-
tions. For any given order, a general isotropic tensor can
be written as a linear combination of a set of linearly inde-
pendent isotropic tensors. The number of isotropic tensors
depends on the order of the tensor itself. Following Reif and
Andreassen [2003], the isotropic limit of (4), which com-
prises tensors up to the third order, is obtained by noting
that the most general isotropic form of any first, second, or
third-order tensor can be written as

Xi = 0,

Xij = �2ıij =
1
3
Xmmıij,

Xijk = �3�ijk = 0,
(5)

where �i are scalars, ıij is the Kronecker delta, and �ijk is
the Levi-Civita alternating tensor. Hence, in the limit of
isotropic turbulence only tensors of orders zero and two will
remain in (4). Imposing the isotropy constraint, (5), on (4)
yields

2
3
�@mhum�i@k@kUi =

2
3

Pr–1"@i� + ˇgi"� . (6)

[15] This physically implies that if the turbulence would
be truly isotropic, "(x, t) should be exactly balanced accord-
ing to (6). As pointed out by Reif and Andreassen [2003], it
is unlikely that this relation would hold exactly, making the
assumption of local isotropy approximative.
2.2.2. Generalized Mixing Efficiency

[16] The mixing efficiency coefficient, 	 , is used to pre-
dict small-scale mixing processes in atmospheric science
and oceanography. It is defined as the ratio of dissipation
of available potential energy to dissipation of turbulence
kinetic energy, i.e., 	 = "p/", where "p = (ˇg/N)2"� . Using
this definition, (6) can thus be written as

	 =
"p

"
=

2
3

Pr–1 –
2�@mhum�i@k@kUi

3"@i�
, (7)

which is valid for an incompressible fluid in the limit of
locally isotropic turbulence. Previous studies have shown
values of 	 in the range between 0.33 and 1 for atmospheric
flows [Galperin and Sukoriansky, 2010]. However, McIntyre
[1989] reports that 	 might not be constant, but can vary by
an order of magnitude. Fernando [1991] also claims that 	
may depend on various factors, among others Pr, which is in
agreement with our theoretically derived result, (7).

[17] By assuming U = U(x3), i.e., horizontally
divergence-free flow, the second term on the right-hand side
of (7) can be neglected. This yields a mixing efficiency only
dependent on Pr. For atmospheric flows, (7) gives 	 � 0.95
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Figure 1. Contours of instantaneous vorticity magnitudes at (top) t* = 50 and (bottom) t* = 227. C.f. also Figures 2 and 3.

which is within the range shown in previous studies. Finally,
it should be noted that the commonly used assumption of
homogeneous turbulence has not been invoked in the present
analysis.
2.2.3. New Dissipation Model

[18] Inspired by this discussion, the functional depen-
dence of the viscous dissipation rate on mean temperature
gradient and dissipation rate of temperature variance is fur-
ther investigated. The motivation is that both the mean
temperature gradient and the dissipation rate of tempera-
ture variance can be measured fairly accurately, which thus
potentially provides a dissipation rate model applicable to
full scale flows. This is true particularly in atmospheric
flows, where Pr � 1, implying that the scales of thermal
dissipation is similar to those of viscous dissipation. By
assuming horizontally divergence-free flow, the left-hand
side of (6) vanishes and the proposed model takes the form

"mod = –C"
"�giˇPr
@i�

, (8)

in which C" is an a priori unknown model coefficient.
C" = 3/2 corresponds to locally isotropic turbulence. Gener-
ally, C" will depend on the flow characteristics. For oceanic
flows, in which Pr � 10, the scales of thermal dissipa-
tion are approximately an order of magnitude smaller than
those of viscous dissipation [Chung and Matheou, 2012].
Equation (8) can in that case be rearranged to express "� in
terms of " if desirable.

[19] For comparative purposes, the model advocated by
Weinstock [1981], developed to account for stratification, is
also included in the present study:

"W = 0.4hu2
3iN.

The isotropic formulation (see, e.g., Thoroddsen and Van
Atta [1992] for derivation), where isotropic turbulence is
assumed, is perhaps the most used and well-known dis-
sipation model, requiring the measurement of only one
(arbitrary) component of the fluctuating velocity gradient.
Two variants of this model, based on different compo-
nents of the fluctuating velocity gradient, will also be used
for comparison:

"iso1 = 7.5�h(@3u1)2i,
"iso2 = 7.5�h(@1u3)2i.

2.3. Numerical Database
[20] In the DNS, gravity acts in the vertical direction,

x3. The domain is periodic in both horizontal (x1 and x2)

directions, and symmetry conditions are imposed on the ver-
tical boundaries. A third-order Runge-Kutta method is used
to integrate in time, and the solver is pseudo-spectral in
space. The domain size is 4
 � 2
 � 2
, where 
 is the
wavelength of the most unstable eigenmode of the Kelvin-
Helmholtz instability. Further details can be found in Werne
et al. [2005].

[21] The initial flow at t* = 0, where t* = tU0/H is dimen-
sionless time, comprises a small perturbation superposed on
a background velocity field Qu = [U0tanh(x3/H), 0, 0] and the
temperature field Q� = ˛x3, where ˛ is a constant coefficient.
The parameters characterizing the initial flow fields are the
Richardson number Ri = gˇ˛H2/U2

0 = 0.05, the Reynolds
number Re = U0H/� = 2500, and Pr = 1. Here H and U0
denote half the initial shear layer depth and the freestream
velocity, respectively.

[22] The evolution of the flow field undergoes several
stages (for a more detailed description, see, e.g., Werne et
al. [2005], Fritts et al. [1996], and Palmer et al. [1996]). A
shear layer instability develops with time, leading initially to
Kelvin-Helmholtz billows (Figure 1, top) that become unsta-
ble, and subsequently develops into a fully turbulent shear
layer. For the small scales, the imposition of the stably strat-
ified background becomes significant at a later stage of the
shear layer development in the simulation, which gradually
suppresses the turbulence levels such that the flow field ulti-
mately undergoes relaminarization. During the later stages
(at which stratification starts to be important), the shear layer

Figure 2. Nondimensional mean velocity, U*
1 = U1/U0, and

mean temperature, �* = �/(˛H), profiles at t* = 0 (�������),
50 (– – –), and 227 ( ).
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Figure 3. Nondimensional turbulence kinetic energy, k* =R
kdx3/(U2

0H), versus t*. The symbols mark t* = 50, 227,
282, and 325.

thickness becomes almost constant (–3.5 < x3 < 3.5), and
the flow field comes very close to being statistically homo-
geneous in the streamwise (x1) direction. This occurs at
t*&227, cf. Figure 1 (bottom).

[23] In the present study, this particular stage of the flow
evolution is in focus. Turbulence statistics are obtained by
spatially averaging the flow field in both horizontal direc-
tions.

[24] Figure 2 shows the initial mean profiles of velocity
and temperature, as well as the profiles for two later times,
corresponding to the two time instances shown in Figure 1.

[25] The turbulence kinetic energy, k = 1
2 huiuii, is shown

on nondimensional form as a function of time in Figure 3.
Here, the statistical correlations are obtained by spatially
averaging in the horizontal directions. Since the flow field is
statistically unsteady, time averaging is not justified. Despite
similar turbulence kinetic energy levels around the times
t* = 50 and t* = 227, the turbulence Reynolds number,
ReT = k2/("�), varies greatly with time. This reflects the
scale separation; early in the simulation, when the flow is
essentially laminar, max{ReT} = 92.3, whereas late in the

Figure 4. Local Richardson number at t* = 227 (� � � � � � �),
282 (– – –), and 325 ( ). Layer edges are marked by
horizontal dotted lines (x3/H = ˙3.5).

Figure 5. Nondimensional turbulence dissipation rate, "* =
"H/U3

0, at t* = 227; ı ı ı (DNS); (proposed model); �������
(Weinstock); – – – (isotropic models). min{Ri} = 0.29.

simulation, max{ReT} = 555.6. The maximum value of
ReT = 2706 occurs at t* = 220, and the maximum value of
Reb = 142 occurs at t* = 110. This buoyancy Reynolds num-
ber is below the critical value of 200, indicating a degree of
anisotropy also at the small scales of the flow.

[26] For t*&227, stable stratification becomes dynami-
cally important, which coincides with the time when nearly
homogeneous turbulence develops. The turbulence dissipa-
tion rate is evaluated during this phase of the flow evolution.
From time t*&227, min{Riloc} > 0.3, where the local
Richardson number is defined as Riloc = ˇg@3�/(@3U1)2.

[27] The local Richardson number at t* = 227, 282,
and 325 is shown in Figure 4. These three time instances
correspond to the times at which the dissipation models
are evaluated. The horizontal lines in Figure 4 mark the
approximate edges of the shear layer.

3. Results and Discussion
[28] In light of the previous discussion, comparison of the

newly proposed dissipation rate model to DNS results and
other models will be restricted to Riloc > 0.3. For such con-
ditions, a suitable value of the empirical model coefficient is
found to be C" = 4.5 (recall that C" = 3/2 corresponds to
isotropic turbulence). This further implies that with the pro-
posed model, the mixing efficiency 	 = (C"Pr)–1 � 0.22.
Note that for other flows, the value of C", and subsequently
	 , might differ.

[29] When using the isotropic formulation to estimate tur-
bulence dissipation rate in an anisotropic field, it is not
possible to know a priori which fluctuating velocity gradient
component is the most appropriate to use. Systematic studies
may indicate which components are best suited for certain
kinds of flow, such as the results of Smyth and Moum [2000]
related to stably stratified shear flow. Ideally, if the dissipa-
tive scales of the flow were isotropic, this choice would be
arbitrary. Consequently, depending on the choice of com-
ponent, the estimated dissipation rate can attain a range of
values. To reflect this potential variation, two isotropic mod-
els that represent the extremes (maximum and minimum) of
all the possible isotropic estimates are used. Hence, the esti-
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Figure 6. Nondimensional turbulence dissipation rate, "* =
"H/U3

0, at t* = 282; ı ı ı (DNS); (proposed model); �������
(Weinstock); – – – (isotropic models). min{Ri} = 0.35.

mated dissipation rate falls anywhere between "iso1 and "iso2,
depending on the choice of velocity gradient component if
the isotropic formulation is used.

[30] Figures 5–7 show the estimated and exact dissipation
rates at t* = 227, 282, and 325, respectively.

[31] At t* = 227 (Figure 5), the proposed dissipation rate
model is in good agreement with the DNS data, particu-
larly at the edges of the turbulent layer. Near the centerline
(x3/H = 0) Weinstock’s model is as close to the DNS value as
the new model, but both models underpredict the dissipation
rate slightly. Figure 4 shows that the local Richardson num-
ber is significantly lower close to the centerline than near the
edges, indicating less stable flow in that region. This is most
likely the reason why the proposed model is less accurate
close to x3/H = 0. The large range of possible outcomes from
the isotropic formulation should also be noted; not surpris-
ingly, the isotropic models seem unsuited for stably stratified
flows in that they give such a wide range of results, thus also
implying lack of isotropy, even at the dissipative scales.

Figure 7. Nondimensional turbulence dissipation rate, "* =
"H/U3

0, at t* = 325; ı ı ı (DNS); (proposed model); �������
(Weinstock); – – – (isotropic models). min{Ri} = 0.40.

Table 1. Integrated Turbulence Dissipation Rate Across the Shear
Layer,

R 3.5
–3.5 "dx3/U3

0

Time DNS Proposed Model Weinstock Isotropic

t* = 227 0.024 0.0203 0.0196 0.0075 – 0.0519
t* = 282 0.0047 0.0045 0.0045 0.0008 – 0.0140
t* = 325 0.0014 0.0014 0.0017 0.0001 – 0.0057

[32] From Figures 6 and 7, in combination with Figure 4,
there seems to be a tendency that the proposed dissipation
rate model performs better as the level of stable stratifica-
tion increases. At t* = 282 and 325, the proposed model
agrees remarkably well with the DNS results. In this case,
Weinstock’s model underpredicts the dissipation rate close
to the center of the turbulent layer and exaggerates it near
the layer edges. It should also be noted that the magnitude of
the dissipation rate varies with an order of magnitude from
t* = 227 to t* = 325.

[33] The results of Figures 5–7 are summarized in Table 1.
Despite the disagreement locally, Weinstock’s model does
surprisingly well in estimating the total dissipation rate
within the shear layer. The proposed model performs even
better. At most (at t* = 227), the deviation from the DNS data
is 15%. By contrast, the isotropic estimates differ as much
as 93% (at t* = 325).

4. Concluding Remarks
[34] A new model for the turbulence dissipation rate in

stably stratified turbulent flows has been derived and com-
pared to DNS data as well as to two other types of models.
Comparison with DNS data demonstrated that the proposed
model performs very well for Riloc0.3. As opposed to most
other algebraic models, the proposed model is functionally
dependent on measurable quantities, thus making the model
suitable also for use with experimental data.

[35] A further simplification of the model would be to
replace the thermal dissipation rate with only one of its fluc-
tuating temperature gradients. Based on the DNS data, the
most appropriate choice would be to use h(@3� )2i which
dominates the contribution to "� . Such a modification would
require recalibration of the model coefficient, C", in (8).
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