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Abstract—Synthetic aperture sonar (SAS) interferometry can
provide very high resolution images and topographic maps of
the seafloor over large swaths. Processing of interferometric data
to retrieve reliable depth estimates of the seafloor is, however,
non-trivial. Traditional narrowband interferometry processing
relies on advanced phase unwrapping techniques, constraints,
and prior knowledge to resolve phase ambiguities. These methods
all have dependence throughout the dataset, e.g. a small error
in the assumption may cause a global error in the final phase
estimate. For wideband systems there are alternative techniques
to estimate the absolute (or ambiguity-free) phase difference
directly. We consider four different wideband interferometry
techniques for direct phase difference estimation: complex cross
correlation, split-spectrum algorithm, and the multi-chromatic
approach. In addition, we develop a weighted split-spectrum
algorithm, where the weights minimizes the variance in the
absolute phase estimate. We benchmark these techniques on
simulated data and demonstrate the techniques on real data
from the HISAS wideband interferometric SAS on a HUGIN
autonomous underwater vehicle. We have found the following:
The cross correlation technique always outperforms the other
techniques in misregistrated areas caused by severe topographic
changes. The split spectrum techniques are substantially faster
than the cross correlation technique. The multi-chromatic ap-
proach has similar performance as the multiband split spectrum
technique for the same choice of bands. We demonstrate that all
the wideband interferometry techniques outperform a standard
Goldstein‘s Branch cut phase unwrapping algorithm on real data
from a complicated scene containing an elevated target and severe
layover.

Index Terms—Synthetic aperture sonar (SAS), synthetic aper-
ture radar (SAR), wideband interferometry, complex cross cor-
relation, split spectrum algorithm, multi chromatic analysis

I. INTRODUCTION

INterferometry refers to a family of techniques where in-
terference phenomena between waves are used to measure

e.g. the shift between two dataset. In synthetic aperture radar
(SAR) interferometry means measuring the shift between SAR
images. If the sensor positions are separated with a vertical
baseline, the across-track shift can be used to estimate the
topography.

Synthetic aperture sonar (SAS) technology (similar to SAR)
has matured substantially the last few years [1], [2]. As for
radar, interferometry has been considered for SAS [3]–[5],
with specific differences between SAS and SAR [6], [7].
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Fig. 1. The HUGIN autonomous underwater vehicle equipped with the
HISAS wideband interferometric synthetic aperture sonar.

The Norwegian Defence Research Establishment (FFI) and
Kongsberg Maritime have a long term collaboration to de-
velop SAS technology. Fig. 1 shows a HUGIN autonomous
underwater vehicle (AUV) onboard FFI’s research vessel H.
U. Sverdrup II. The vehicle is equipped with a HISAS 1030
wideband interferometric SAS with two receiver arrays for
single-pass interferometry and 30% relative bandwidth [8], [9].

Traditional SAR interferometry techniques [10]–[12] rely
on coregistered images and advanced phase unwrapping tech-
niques to produce Digital Elevation Models (DEM). For
wideband systems, the absolute (or ambiguity-free) phase
difference between two images can be estimated directly [13]–
[15]. In this paper we consider four different techniques: The
complex cross correlation (CCC) technique used in standard
time delay estimation [16], [17]. The split-spectrum algorithm
(SSA), based on splitting the signal into two frequency sub-
bands and generating an differential interferogram (similar to
Delta-k) [18], [19]. The multi-chromatic approach (MCA),
based on generating multiple interferograms in different fre-
quency bands. The interferograms will wrap at different in-
tervals, and the wraps that minimizes the subband differences
are chosen [20], [21]. We have also developed a weighted
multiband split-spectrum algorithm (WSSA), where multiple
bands are formed, and interferograms at all difference frequen-
cies are constructed. The weights are chosen based on the
signal to noise ratio and the frequency separations. We study
the theoretical performance of these techniques, evaluate their
performance on a simulated scenario, and finally apply the
methods on real data from the HISAS interferometric SAS.
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Fig. 2. Geometry of seafloor depth estimation.

In section II we review the basic principle of depth estima-
tion by interferometry, in section III we describe the different
techniques for absolute phase difference estimation. In IV we
describe the processing flow for wideband interferometry, and
in V we assess the performance of the different techniques
on simulated data. In VI we show wideband interferometry
results on real data collected by HUGIN AUV, and in VII we
conclude our work.

II. DEPTH ESTIMATION

We construct a master SAS image sm(t, x) and slave SAS
image ss(t, x) from two vertically displaced arrays, where
t is the two-way travel time and x is the position along
the synthetic aperture. By estimating the time delay, td(t),
between corresponding image features, we obtain a depth-
estimate relative to the sonar coordinate system [10], [22,
chapter 5]

z(t) = r
c

D
td(t). (1)

Here r = ct/2 is the one way range, c is the sound speed
and D the interferometric baseline (see Fig. 2). The depth
estimation is thus reduced to a time delay estimation problem.

A. Coarse co-registration

In order to extract the phase difference (or the corresponding
time delay) between the master and slave SAS images, the
images must be co-registered [22], [23]. The success of the
co-registration can be estimated from the coherence between
the two images. Coherence is here defined as the amplitude
of the complex degree of coherence [10, chapter 4.3]

γ(τ) =
〈sms∗s(td − τ)〉

[〈|sm|2〉 〈|ss|2〉]1/2
(2)

evaluated at zero-lag, τ = 0. The coherence has the property
0 ≤ |γ(τ)| ≤ 1. For simplicity, we have omitted the time- and
position arguments.

Registration within a fraction of a resolution cell is required
for accurate phase estimation modulo 2π. For absolute (ambi-
guity free) phase difference estimation, registration to within
the wrapping interval is also required. The image resolution

along the (two-way) time axis is 1/B, and the wrapping
interval of the phase difference is 1/fc, where B is the full
bandwidth and fc the center frequency. This means that, in
general, co-registration to within the wrapping interval is only
achievable for ultra-wideband systems with high signal-to-
noise ratio (SNR). The co-registration is usually performed
through a warping function estimated from a set of control
points [24], or through an a priori knowledge of the seafloor
depth [5]. Both the warping function and the a priori seafloor
depth are typically of too low order to capture rapid depth
changes, which occur on complicated objects. This means that
in practice, there will always be some occurrence of wrap
ambiguities in the phase differences.

B. Interferogram estimation

For each resolution cell in the co-registered SAS images,
the complex interferogram γ around the center frequency fc
is computed through

γ(fc) = sm(fc)s
∗
s(fc). (3)

In practice a sliding maximum likelihood phase estimation
filter is used to reduce the phase noise in the complex inter-
ferogram at the cost of reduced spatial resolution [25, chapter
3.2], [10, chapter 4.3]. The interferometric phase difference,
ψw(fc) = arg{γ(fc)}, is a function of the interferometric
time delay. However, the phase difference is available only
modulo 2π, with the absolute phase difference between the
two images, ψa(fc), defined as

ψa(fc) = 2πfctd. (4)

The time delay is thus related to the absolute phase difference
and the interferometric (wrapped) phase difference through

td =
ψa(fc)

2πfc
=
ψw(fc)

2πfc
+
k(fc)

fc
, (5)

where k(fc) is the number of 2π-wraps at center frequency.

C. Phase unwrapping

A common method used to resolve phase ambiguities in
the interferogram is a 2D phase unwrapper [25]. A phase
unwrapper assumes that the phase differences between neigh-
boring pixels are less than π. Phase unwrappers therefore add
additional information and may outperform absolute phase
difference estimators. However, when using 2D phase unwrap-
pers, any small error in the assumption may cause an global
error in the final depth estimate, since all pixels are dependent.
In this paper we have chosen to use a standard Goldstein‘s
Branch cut algorithm, as described in [25, chapter 4.2], as
a benchmark method. There do exist more advanced phase
unwrappers, but since our effort in this paper is concentrated
in estimating the absolute phase differences directly more
advanced phase unwrappers are outside the scope of this
article.
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Fig. 3. Approximated probability density function (PDF) for estimation of
delay τ with the maximum likelihood estimator. The example is for 0 dB SNR,
100 kHz center frequency, 30% relative bandwidth and 0.5 ms integration
time.

III. ABSOLUTE PHASE DIFFERENCE ESTIMATORS

The challenge of absolute phase difference estimation is to
obtain the correct wrap. Different absolute phase estimators
will have different performance, but a non-adaptive method
cannot perform better than the maximum likelihood estimator
(MLE). The performance of such an estimator has been studied
in detail [26], [27]. The probability of estimating a delay offset
τ cannot generally be expressed in a closed analytic form, but
a closely approximated expression is given in [27, eq 4-8],
assuming a large number of independent samples. The related
probability density function (PDF), p(τ), is a function of the
SNR, frequency interval, the length of the time series (i.e. the
number of independent samples) and the sensor separation in
wavelengths. In Fig. 3 we show p(τ) for an example case
with 0 dB SNR, 100 kHz center frequency, 30% relative
bandwidth and 0.5 ms integration time, limited to an interval
of ±5 wraps. We observe that the function describes the lower
bound regarding both the probability for incorrect wrap and
the accuracy within each wrap.

The probability of obtaining the correct wrap is found
by integrating p(τ) over the interval [−1/(2fc), 1/(2fc)].
Examples on the maximum theoretical probability of obtaining
the correct wrap as a function of SNR and relative bandwidth
is presented in Fig. 4. The signal frequency is 100 kHz, and
the length of the time series is 0.5 ms, corresponding to 50
independent samples for 30% relative bandwidth. The absolute
phase difference error is limited within ±5 wraps, hence the
lower value is 0.1. We see that a wideband system with e.g.
30% relative bandwidth has substantially better probability to
estimate correct wrap than a narrowband system. This is an
important finding, and suggests that absolute phase techniques
can potentially achieve good performance on wideband sys-
tems.

In the rest of this section, we describe four different
techniques for absolute phase difference estimation.

Fig. 4. Theoretical probability of correct wrap as a function of SNR and
relative bandwidth. The length of the series is 0.5 ms, corresponding to 50
independent samples for 30% relative bandwidth, and the search is limited
within ±5 wraps.

A. Complex Cross Correlation (CCC)

Peak detection in the complex cross correlation (CCC) of
the two sequences is the Maximum Likelihood Estimator for
differential shift estimation of partially correlated sequences
[22, chapter 5.4], [28]. The MLE has the asymptotic properties
of being unbiased and achieving the Cramér-Rao lower bound
(CRLB) [29, chapter 7]. The master and slave images must
be oversampled before the fine-level (sub-resolution) cross
correlation to avoid aliasing [10, chapter 2.5.3], and the
step interval for the CCC evaluation should not exceed the
ambiguity interval. Then the peak magnitude is detected, and
can be used to determine the absolute phase (and thereby the
correct wrap interval)

ψa(fc) = 2πfc arg max
τ

|γ(τ)| (6)

The ability to estimate correct wrap is dependent on the
relative bandwidth and the signal to noise ratio [27], [17].
For systems with limited bandwidth, CCC is less suited as
an absolute phase difference estimator. In the limit of ultra-
wideband systems, the phase becomes ambiguity free [30],
and only phase noise within the wrap interval affects the
accuracy of the depth estimation. CCC is computational heavy
compared to the other techniques in this paper. It starts from
the coarse co-registrated images and performs fine-level (sub-
resolution) co-registration over the entire image. CCC also
allows for searching outside the initial pixel correlations, and
therefore is a more robust method.

In the case of non-white noise and/or non-white signal,
standard CCC may not be optimum, and techniques like the
generalized cross correlation (GCC) [31], [32] can potentially
improve the performance.

B. Split-Spectrum Algorithm (SSA)

The split-spectrum algorithm (SSA) splits the full band-
width B into two non-overlapping subbands of bandwidth b.
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Then the interferogram from each subband is formed, and
thereafter combined into a differential interferogram [19].
By expressing both bands through equation (5), we observe
that this corresponds to an interferogram at the differential
frequency

ψa(∆f) = 2π(f2 − f1)td = ψa(f2)− ψa(f1) (7)

where f1 and f2 are the frequencies of each subband and
∆f = f2−f1. The advantage is that this interferogram wraps
with the larger period 1/∆f . The costs are larger resolution
cells by a factor B/b, and increased variance of the time delay.
With SSA, the absolute phase at fc becomes

ψa(fc) =
fc
∆f

ψa(∆f). (8)

By inserting the variance for the time delay estimate of each
subband σ2

f1
and σ2

f2
we find the corresponding variance on

the estimate using the delta frequency σ2
∆f to be

σ2
∆f =

f2σ
2
f2

+ f1σ
2
f1

f2 − f1
. (9)

The Split-Spectrum Algorithm described in the literature uses
only two subbands. Within this restriction it has been shown
that the smallest variance is achieved by dividing the total
bandwidth B into three equal parts and using the upper
and lower bands [19]. The split spectrum technique uses the
same principle as in ∆K, first exploited by [33] in radar
applications.

C. Multi-Chromatic Approach (MCA)

An alternative method that can be used on either two or
multiple frequency bands is the Multi-Chromatic Approach
(MCA) [14], [34]. MCA, as with SSA, takes advantage
of that the absolute phase difference is proportional to the
frequency. The original master and slave images are divided
into two or multiple bands at different center frequencies
fn, n = 1, 2, 3, . . . , N with reduced bandwidth b < B. Each
subband can overlap in frequency domain b > B/N [35],
[36]. Interferograms at different center frequencies will wrap
at different intervals. As a result, the time delay td can
be estimated by comparing the wrap combinations for the
different interferograms.

Functionally, the estimator can be described as follows. We
construct a series of vectors

k = [k1, k2, . . . , kN ], kn = 0,±1,±2, . . . (10)

containing candidate solutions within certain limits given by
geometry and baseline. We then form a cost function which
is the variance of the absolute phase estimate for a given
candidate k

J(k) =
1

N

N∑
n=1

{
fc
fn

(ψw(fn) + 2πkn)− ψavg(fc,k)

}2

(11)
where

ψavg(fc,k) =
1

N

N∑
n=1

fc
fn
{ψw(fn) + 2πkn} (12)

is the average absolute phase for the given selection of k. We
then minimize the cost function

kmin = arg min
k

J(k) (13)

to determine the optimal choice of wraps per subband kmin.
The absolute phase difference is then estimated by averaging
over all subbands

ψa(fc) =
1

N

N∑
n=1

fc
fn
{ψw(fn) + 2πkn,min} . (14)

In the general case of different variance in different bands, the
above least squares method should be modified to incorporate
weights of 1/σ2 [14], [20]. The multifrequency interferometry
method [15], [21] give a result similar to MCA, but it
approaches the problem thorough the PDF of the absolute
phase estimate rather than through the error function of the
absolute phase estimate.

D. Weighted Multiband Split-Spectrum Algorithm (WSSA)

In order to use all the signal information, we suggest an
extension of SSA to multiple bands. As with MCA, we divide
the signal bandwidth into N bands. We then form all the
difference frequencies ∆fnm = fn−fm, using the description
for SSA, where equation (9) is valid for non-overlapping
subbands. There are K = N(N−1)/2 differences [37, chapter
3.3]. We estimate the absolute phase at fc, ψa(fc), from the
absolute phase of each band pair, ψa(∆fnm), and average all
to form a final estimate of the absolute phase difference

ψa(fc) =
1

wtot

N∑
n=1

n∑
m=1
m6=n

wnm
fc

∆fnm
ψa(∆fnm). (15)

wnm is a weight that can be chosen, and wtot is a normaliza-
tion factor. By choosing wnm = 1/σ2

∆fnm
from (9) and

wtot =
1

σ2
∆ftot

, σ2
∆ftot =

N∑
n=1

n∑
m=1
m6=n

σ2
∆fnm

(16)

we get a weigthed multiband SSA estimate, where the weights
of the individual band-pairs are the inverse of the variance
1/σ2

∆fnm
. By using the actual estimates for σ2

fi
, this is an

adaptive filter that minimizes the variance of the combined
absolute phase difference estimate. Such adaption to the data
will potentially improve the performance compared to deter-
ministic filters when the subband variance changes over the
bands. A similar type of weighting was suggested for MCA in
[14], [20]. By assuming the same variance for each subband,
we get a non-adaptive multiband method with the (relative)
weights wnm = (f2 − f1)/(f2 + f1).

E. Summary of Methods

CCC is maximum likelihood and should theoretically
achieve a Fisher efficiency of one (the ratio of the CRLB to
the variance of the estimator). According to [38] the Fisher
efficiency for SSA is 0.75 for two densely spaced subbands
of b = B/2, and 0.89 by using two maximally separated
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Fig. 5. Full wideband interferometry processing scheme including absolute
phase difference estimation.

subbands of b = B/3. An extension of the method to
four bands should give Fisher efficiencies of 0.93 and 0.96
respectively. Even so, our WSSA is an adaptive minimum least
squares method that could outperform maximum likelihood
estimators in the case of non-white noise.

Traditional narrowband SAR/SAS interferometry requires a
2D phase unwrapping stage (see Section II-C), where prior
knowledge or specific properties of the data is assumed
(smooth surfaces or such) [39]. Thus for narrowband systems,
methods like Conditional Mean Estimate and Maximum A
Posteriori (MAP) can obtain substantially higher performance
than the MLE [40], when the prior knowledge is correct.

The key properties of the described methods are:
• CCC does a local coregistration, and always performs

better than subband methods on misregistrated images.
• CCC is substantially slower than the other methods.
• MCA and multiband SSA have similar performance for

the same choice of bands.
• Multiband SSA is simpler to implement and is faster than

MCA for the same choice of bands.
• Multiband WSSA is always better than multiband SSA

on the same choice of bands.
• Multiband SSA and MCA approaches the performance

of CCC for large number of bands.

IV. PROCESSING FLOW

Fig. 5 shows the basic processing flow for wideband SAS
interferometry processing including the absolute phase estima-
tion methods described in the previous section. In this section,
we describe each of the components in this processing flow.

We first produce a master and a slave image which are
coarsely coregistered by rendering the images on an a priori
seafloor depth. The coarse registration is based on real aperture
(or sidescan) seafloor depth estimation from the same data

[41], [42]. The images are constructed using the backprojec-
tion algorithm, and are gridded in ground range. We pre-flatten
the spectrum of the images as suggested in [35].

Then one of the absolute phase difference estimators are
run to resolve the phase ambiguities of the full bandwidth
interferogram. All of the methods use a maximum likelihood
estimator to estimate the phase differences. In this article we
have chosen to use a 9 × 9 pixels filter window. Since the
images are slightly oversampled in 2×2 cm, the effective num-
ber of independent pixels in the phase difference estimators is
approximately 50.

All the subband methods have increased variance compared
to the variance of the phase difference on the full band
interferogram (for CCC, the full bandwidth is incorporated
in the estimation). We therefore only use the absolute phase
difference estimates to determine the correct wrap

k(fc) =

⌊
1

2π
{ψa(fc)− ψw(fc)}

⌉
(17)

where be is the round-operator. In order to obtain the correct
k(fc), each subband must be selected wide enough to yield
a time delay estimate variance smaller than the wrap interval
1/fc.

In a standard interferogram, the phase differences are typi-
cally wrapped from smooth, continuous absolute phase differ-
ences. This may not be true for very complicated scenes. Thus
large regions in the interferogram will have the same phase
wraps, and a 2D phase unwrapper simply tries to connect the
regions. After we have run one of the absolute phase differ-
ence estimators, the interferogram are in general unwrapped.
However, there will remain small areas (with a size typical less
then the phase difference estimation window) with incorrect
wrap randomly distributed throughout the scene. As we saw in
Fig. 4, the number of wrap errors is strongly dependent on the
SNR. To remove these residual errors we have implemented
a local unwrapper. The local unwrapper estimates the median
value inside a small neighboring region and unwraps the phase
difference to this value. This method removes the wrap errors
provided that the number of incorrect wraps are significantly
less than the number of correct wraps. The advantage with
such a local method is that a small error in the method will
not affect large regions in the unwrapped phase difference.
Note that since the wrap errors are randomly located after we
have run an absolute phase difference estimators, the data do
now not fulfill the assumptions of most phase unwrappers. This
means that running for example Goldsteins Branch algorithm
on top of an absolute phase difference estimators will provide
large errors.

V. PERFORMANCE ASSESSMENT ON SIMULATED DATA

To test the performance we have simulated a scene consist-
ing of a flat seafloor (simple) with a wreck (difficult). We have
focused the SAS images onto a ground-plane with a 1 m depth
error relative to the true depth of the flat part of the seafloor
(which is realistic in real scenarios).

The simulated wreck has a height which is up to 4 m
off the a priori depth. The simulated sonar is a HISAS
1030 sonar with 30 kHz bandwidth around 100 kHz center
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Fig. 6. Probability of correct wrap as a function of SNR for the different
methods . For WSSA we have used five dense subbands and for SSA we have
used two sparse subbands.

frequency, and a 30 cm vertical baseline (20λ). The wreck
is at 10 meters water depth and the ground range in the
simulation extends from 41 to 59 meters. The front of the
wreck causes significant layover which causes problems for
all of the considered methods. Recent work [43], [44] show
promising results in reducing the effect of layover via the SAR
tomography technique, but such methods are outside the scope
of this paper.

In our implementation, we have found that MCA and
multiband SSA have similar performance for the same choice
of bands. We therefore only consider multiband SSA, WSSA
and CCC here.

We have evaluated two performance measures:

A. Robustness

We study the robustness of the techniques by investigating
how often the methods successfully manage to estimate the
correct wrap. In this case we have considered the flat seafloor
region of our simulation. The findings are: WSSA and SSA
have similar performance on two subbands; WSSA is better
than SSA for three or more subbands; more subbands are
better; the number of subbands should be lower than the num-
ber of across-track pixels in the phase difference estimation
window; when using two subbands these should be sparse;
when using five subbands these should be densely spaced;
CCC is better than WSSA and SSA up to three subbands, but
WSSA and SSA with five subbands are better than CCC (see
discussion below). In Fig. 6 we show the performance of the
most relevant methods as a function of estimated SNR. Notice
that the results in Fig. 6 only applies to this specific scenario
and should only be used to compare the relative performance
between the methods.

WSSA is an adaptive method that can outperform CCC.
However, we found that multiband SSA also outperformed
CCC, while we expected CCC to have the highest score of the
none-adaptive methods. This could be a consequence of CCC
being a higher order model. CCC estimates shift in addition

Fig. 7. Estimated across-track pixel shift (top), estimated coherence (center)
and estimated standard deviation (bottom) as a function of across-track
distance. The results are the average over 400 along-track lines in the flat
region of our noise-free simulated data.

to phase-difference, in contradiction to WSSA and SSA which
assumes zero-lag. In this simulation the shift is only a small
fraction of a resolution cell, so zero-lag is the correct answer.
This mean that WSSA and SSA have a priori knowledge
which CCC does not have.

B. Accuracy
We study the accuracy of the techniques by investigating the

actual variance on the final depth estimates. CCC estimates a
shift and perform better than the other methods if there is
significant misregistration between the images. If we assume
that the wrap is correct, both WSSA and SSA have the same
accuracy as regular phase-differencing. This is because we
only use WSSA and SSA to estimate the wraps and then we
apply full bandwidth phase-differencing on top.

In Fig. 7 we show a comparison between the zero-lag
methods and CCC. In the upper panel we show the estimated
pixel shift from CCC. The steps in the shift are due to the
finite sampling inside CCC. In the center panel we compare
the estimated coherence between the the zero-lag methods and
CCC. Notice the significant coherence loss which occurs when
the shift is more than a twentieth of a resolution cell. Since we
have simulated a system where the resolution is comparable
to the wavelength, we observe significant coherence loss even
below the usual coregistration demand of approximately a
tenth of a resolution cell [10]. In the lower panel we show the
corresponding standard deviation of the estimate. Note that all
methods are unbiased. For a realistic SNR the curves would
have been much closer, but the figure illustrates that for high
SNR, any misregistration would cause coherence loss for the
zero-lag methods.
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Fig. 8. Model bathymetry (top), CCC based bathymetry (center) and WSSA
based bathymetry (bottom). In the model, both the layover region and the
shadow region have been removed. In the center and lower panel all estimates
with a coherence below 0.55 are removed. The average SNR in the SAS
images are around 10 dB.

In Fig. 8 we show the simulated and estimated bathymetry
on the simulated wreck. All the absolute phase difference esti-
mators have very few wrap-errors, but they fail in the layover
region (due to the overlap of responses from the wreck and
seafloor). On the wreck, however, there is a significant shift in
the interferometric images and therefore CCC performs best.
For WSSA, we have used 5 dense subbands. We also tested
the Goldstein‘s Branch cut algorithm, and it fails severely in
reconstructing the depth of the wreck.

VI. EXPERIMENTAL RESULTS

We have tested the wideband interferometry methods on real
data collected with a HISAS 1030 interferometric SAS (see
Fig. 1). The data were collected in February 2012, south of
Horten, Norway, at approximately 77 m water depth. As for
the simulated data, the experimental data are collected using
30 kHz bandwidth around 100 kHz center frequency, and with
a 30 cm vertical baseline. The object of interest is the wreck
of the 1500 dead weight tons oil tanker Holmengraa, that was
sunk during World War II. The length of the wreck is 68 m,
and the width is 9 m. Fig. 9 shows the SAS image of the
wreck. The range to the center of the image is 95 m, and
the image size is 50 x 80 m. The bright lines on top of the
bridge in the lower left corner of the image, is a school of

Fig. 9. SAS image of the wreck of the Holmengraa. Data courtesy of
Kongsberg Maritime.

fish. The theoretical resolution in the image is around 3 x 3
cm, and the grid resolution is 2 x 2 cm. Fig. 10 shows CCC
based coherence and interferogram. We see that the coherence
is very high (red color) in the flat areas around the wreck,
and on some parts of the wreck. In the shadow region, and
over complex areas of the wreck, the coherence is low (blue
color). The interferometric phase difference (lower panel)
varies slowly over the seafloor surrounding the wreck. On the
wreck, especially in the aft part, there are rapid variations
and disconnected regions, which will cause difficulties for 2D
phase unwrappers.

Fig. 11 and Fig. 12 show the wideband SAS interferometry
results based on CCC, WSSA and Goldstein‘s Branch cut
algorithm. We see that all three techniques are performing well
on the seafloor around the wreck, and on the fore part of the
wreck. On the bridge (the aft part), the Goldstein algorithm
fails badly. WSSA performs satisfactory and produces plausi-
ble depth estimates of all parts of the wreck. CCC performs
even better, having more valid measurements compared to
WSSA due to the local coregistration. In addition, CCC also
produces probable depth estimates of the school of fish (red
stripes over the bridge of the wreck in the lower left corner).
This part of the image has severe layover with a large elevated
structure on the wreck and a school of fish on top.

The fish over the bridge are moving targets that move a
large number of wavelengths during the synthetic aperture
data acquisition. They therefore cause defocus [45, chapter
7] in the SAS image, and each fish mainly appear as a stripe
along-track. Somewhat surprisingly, CCC coherence is high
on the defocused fish. This is due to the fact that the defocus
is approximately equal on the master and slave image, and
high coherence is maintained.

VII. CONCLUSIONS

In this paper we have considered different techniques for
estimating absolute phase difference in wideband synthetic
aperture sonar interferometry. The benefit of using such tech-
niques is that a 2D phase unwrapper where prior knowledge
or specific properties of the data is assumed is not needed. The
studied techniques are the complex cross correlation (CCC),
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Fig. 11. Wideband SAS interferometry results based on a fusion of image, coherence and bathymetry of the image shown in Fig. 9. Depth is color coded,
and brightness is based on image intensity and coherence. The colorbar shows depth in meters relative to the sloping imaging plane which is fitted to match
the a-priori seafloor depth. The depth estimates are based on the CCC technique. Data courtesy of Kongsberg Maritime, Norway.

Fig. 12. Fusion of SAS image, coherence and bathymetry. Left: WSSA. Right: Goldstein‘s Branch cut algorithm. See Fig. 11 for comparison with CCC.
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Fig. 10. Cross correlation based coherence (upper panel) and interferogram
(lower panel) of the scene shown in Fig. 9.

the split-spectrum algorithm (SSA), the multi-chromatic ap-
proach (MCA), and the weighted split-spectrum algorithm
(WSSA). We have benchmarked the techniques on a simulated
scenario, and demonstrated the techniques on real data. WSSA
obtained the best performance on the flat area while CCC
obtained the best performance on complicated topographies.
MCA has similar performance as multiband SSA for the
same choice of subbands. In our implementation, multiband
SSA is much faster than MCA. We have found that all four
wideband interferometry techniques seems well suited for the
HISAS wideband interferometric SAS, and they all outperform
a standard Goldstein‘s Branch cut phase unwrapping algorithm
on real data containing a complicated scene containing an
elevated target and severe layover.
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