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Summary

Target detection is an essential part of radar systems. An important objective in radar target detection
is to satisfy two often contradictory requirements: a high probability of detection with a low false
alarm rate. This report proposes and investigates the use of a particular machine learning method
to detect targets in range-Doppler images. The application of machine learning in such a context
allows the detection procedure to be designed primarily on available data. This can therefore reduce
the need to design detection algorithms tailored for different scenarios.

The method proposed in this report follows a two-step approach. In the first step a depreciated
detection process is performed which results in a high probability of detection and a very large
false alarm rate. In the second step a trained neural network makes a final decision to classify the
detection as true or false. The report shows that trained neural networks are capable of identifying
false detections with considerable accuracy. These networks can utilize information available in
guard cells and Doppler profiles. This allows for a significant reduction in false alarm rate with
moderate loss in the probability of detection. With an appropriately designed neural network, an
overall improved system performance can be achieved when compared against traditional constant
false alarm rate (CFAR) detectors for the specific trained scenarios. The trained scenarios may
include land or sea clutter and difficult to detect targets, such as those with low signal to noise ratio,
multiple closely spaced targets or targets in clutter edges.

The report is based largely on a previously published paper [1] by the author.
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Sammendrag

Maldeteksjon er en viktig oppgave for radarsystemer. En gnsker & tilfredstille to delvis motstridende
krav: & oppna hay deteksjonsevne samtidig med en lav falsk alarmrate. Denne rapporten ser pa
deteksjon av mal i avstand-dopplerbilder. Vi foreslar en maskinleeringsmetodikk for dette formalet.
Bruk av maskinleering gjer det mulig & utvikle deteksjonsmetoder utelukkende basert pa innsamlede
data. Dette kan blant annet redusere behov for utvikling av egne deteksjonsalgoritmer for ulike
scenarioer.

| denne rapporten foreslas en tostegs prosess for deteksjon. | det ferste steget gjennomfares
deteksjon med en forenklet tradisjonell teknikk. Denne teknikken resulterer i hgy deteksjonsevne,
men med atskillige falske deteksjoner. | det neste steget tar et trent nevralt nettverk en endelig
avgjarelse som klassifiserer deteksjoner som korrekte eller falske. Resultatene av en slik prosess
viser at trente nevrale nettverk kan identifisere falske deteksjoner med god ngyaktighet. Nettverket
kan anvende tilgjengelig informasjon i naboceller og dopplerprofiler for bedret ytelse. Dette gjor det
mulig & redusere i falsk alarmrate med begrenset tap i deteksjonsevne. Med et tilpasset trent nevralt
nettverk kan en oppna gkt systemytelse sammenlignet med tradisjonelle CFAR (konstant falsk alarm
rate) deteksjonsmetoder. Scenarioene for opptrening kan inneholde ulik typer clutter og méal, som det
kan veere vanskelig & detektere pa grunn av lav signal-til-stayforhold, multiple neerliggende objekter
eller mal i clutterkanter.

Denne rapporten er hovedsakelig basert pa en publisert artikkel [1] av forfatteren.

4 FFI-RAPPORT 22/02204



Contents

Summary

Sammendrag

1 Introduction

2 Radar and signal model

3 System design
3.1 Step 1: CMSO-CFAR detector
3.2 Step 2: neural network classifier
3.3 Choice of neural network

4 lllustrating examples and discussion
4.1 Noise-only scenario
4.2 Clutter scenario
4.3 Characteristic evaluation

5 Final remarks

References

FFI-RAPPORT 22/02204

11
11
11
14

15
17
22
25

29

30



FFI-RAPPORT 22/02204



1 Introduction

Discriminating targets from background noise and interference is a fundamental task of most radar
systems. Targets need to be differentiated with high probability of detection (Pp) and simultaneously
the detection methodology should offer a low false alarm rate (Pg 4). The radar detection problem
is complicated by possible factors such as multiple closely spaced targets, the presence of clutter
and clutter edges in vicinity of targets. Target detection has been studied heavily over the years and
a large number of techniques have been suggested. One particular class of algorithms, which also
sufficiently satisfy the constant false alarm rate (CFAR) property, include CA (Cell Averaging), GO
(Greatest Of) and SO (Smallest Of) CFAR sliding window methods with several proposed variants
[2,3,4,5,6,7,8, 9]. Importantly, these detectors aim to provide an adaptive mean to calculate the
detection threshold as fixed thresholds are inadequate in case of complex and dynamic surroundings.
In the literature, a wide variety of alternative detection methods have also been proposed for specific
environmental conditions where the detectors are tailored with respect to assorted target and clutter
distributions and applicable secondary data is made use of [10, 11, 12, 13, 14, 15]. These methods
often rely on estimation of distribution parameters, the covariance matrices and are dependent upon
accurate estimation of these figures.

The use of machine learning has gained much attention over the years and these techniques
have also been discussed in radar contexts for target detection [16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26, 27, 28]. Particularly, [23] investigated the use of deep convolutional networks to improve
target detection while [25] employed autoencoders for the same task. In [21, 22, 29], the authors
proposed training of feedforwarding neural networks (NN) to emulate various CFAR detectors
while concurrently aiming to reduce the number of false detections. The trained neural networks
were demonstrated to be effective in reproducing the detection algorithms and in reducing the false
alarm rate with some loss in probability of detection. Nevertheless, the proposed approaches also
left open several questions, such as what features do the networks require to distinguish between
true and false detections, are there circumstances where they do not operate well, how many layers
should a network have and what would be the maximum potential for such a trained neural network?
Several disadvantages with the previous techniques have also been poined out. For instance, the
neural networks were required to learn and implement the CFAR detection process as well as
discriminating between true and false detections resulting in an interweave training procedure with
lesser degree of specialization. Training a network to behave like a standard CFAR method, but
with additional constrains results in trade-off between the two requirements of obtaining a high
probability of detection and a low false alarm rate. The training method can thus mainly only
be used to define detectors with different compromises than the original starting point detector.
The previous strategy was also found to be incapable of further generalization with regard to
sophisticated type of detectors who e.g. require sorting of entries. Finally, processing every sliding
window sample through a full neural network is a computational expensive procedure, compared
to a standard CFAR test, and other strategies who can be developed would therefore be of great
practical interest.

Practically, development of more sophsicated detection methods, based on neural networks or
other techniques, is a necessary requirement to

— detect and track weak targets with low SNR
— detect and track multiple closely spaced targets (such as drones)

— detect and track targets in clutter environments.
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— increase the operational range of radars.

Concrete examples can be linked with for example unmanned aerial drones, these aircaft are
typically small with correspondingly small radar cross section, they can fly in formations close to
each others at low velocities and at low altitudes. Accurate detection of these targets in varying
conditions therefore remains a challengig task.

The method presented in this technical report presents a generic methodology on how to train
and perform the CFAR detection process in combination with feedforwarding neural networks.
The initial detection process is proposed carried out conventionally by making use of an amended,
rudimentary, sliding window detector, and only positive detections are to be processed by the neural
network. The neural network thus acts as a specialized binary classifier between true and false
detections. In a simplified manner, the main parts of this process are visualized in figure 1.1.

The leading detection strategy in the overall setup is based on a modified version of censored
mean SO-CFAR with the objective to force the detector to provide a high probability of detection.
In the suggested SO-CFAR construction, a number of the largest elements in the sliding window
are censored which makes it viable to detect in tangled conditions such as multiple closely spaced
targets as well as enclosed targets in clutter edges. The downside of this is an exceedingly high false
alarm rate which is where the neural network steps in and aims to curtail it to acceptable levels.
In order to achieve a high probability of correct target detection, it is shown that simply using
the CFAR sliding window samples is not sufficient rather the target spread in Doppler contains
important discriminatory information and contributes positively if integrated by the neural network.
By linking together different strategies in an appropriate training session it is shown that a high level
of Pp can be achieved with a satisfactory low Pr 4 for the type of scenarios the network has been
trained on. On the other hand, if only elementary CFAR window data, also excluding guard cells, is
allotted to train a neural network then in a noise-only situation the networks can converge towards a
traditional CFAR detection strategy. The presented techniques would permit a radar sensor to adapt
the detection process to its surroundings based on learned collected or simulated data.

To demonstrate the potential advantages and disadvantages, this reports displays simulations
performed over convoluted scenes with multiple closely spaced fluctuating targets and with and
without K-distributed clutter. The simulations are performed and evaluated under various parameters
and sliding window structures.

Range cells, Neural

Coarse CFAR guard cells, network

Doppler cells classifier

test

Figure 1.1 The overall detection process.
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2 Radar and signal model

This chapter presents a generic structure for a pulsed radar system upon which a sliding window
detector can be modeled. The radar is assumed to emit a burst of M waveforms in a coherent
processing interval (CPI). The targets are assumed to be slowly fluctuating with a distribution,
such as Swerling 1, where the values vary randomly across different dwells but with a given mean
signal-to-noise ratio (SNR) and signal-to-clutter ratio (SCR). For each CPI, the radar processing
unit performs a tapered Fourier transform over each range bin to construct a range-Doppler map
represented by an M X R complex matrix D(z, w). t = 1,2, ..., R is the discrete fast-time parameter
with respect to different time delays (range cells) while w = 1, ..., M represents the Doppler cells.

To perform a detection, each individual cell of the range-Doppler map is evaluated one by one.
The detector takes the square law range samples of the map D, D(z, w) = [D(¢, w)|* V #, w, and a
sliding window of size 2N +2G + 1 is moved across, = 1+N+G,...,R—-N-Gand® =1,..., N
excluding the edges. G refers to the number of guard cells and N to the number of averaging cells
on each side of the CFAR window (an illustration is later given in figure 3.1). The 2N +2G + 1
samples in range specified by the window are extracted in

x(u)=DE-N-G:i+N+G,0), u=1,2,...2N+2G + 1, 2.1

and the cell in the middle of the window, x(N + G + 1), cell under test (CUT), is compared against
a scaled average, 7y, to determine if conditions for declaring a detection are satisfied. G number of
gap cells immediately to the right and left of CUT are discarded when computing the average to
avoid target leakage and neutralize the impact of sidelobes. A detection is declared if

x(u)u=cur > v K, (2.2)

where K is a specified threshold.

The background average, v, plays a central role in the detection process and may be computed
through a variety of methods. In (Cell Averaging) CA-CFAR the average is composed of all
available 2N cells,

1 N 2N+2G+1
y=an Q)+ 3 (), 2.3)
k=1 k=N+2G+2

which corresponds to a maximum likelihood estimate under homogeneous assumptions [30, 6]
but can also be attempted applied under other conditions. Other alternatives, GO (Greatest Of)
GO-CFAR and (Smallest Of) SO-CFAR can be implemented where two averages are computed
based on N reference values each from the left and right side of the CUT,

1 N 1 2N+2G+1
DI ORI YR (OF 2.4)
k=1 k=N+2G+2

In GO-CFAR, a conservative approach is taken as the maximum value among the two is selected as
the comparable value,

v =max (y1,72), 2.5

resulting in typically a slightly lower probability of detection (Pp) alongside reduced false alarm
rate. In SO-CFAR, instead, the smallest value is chosen,

¥ =min (y1,72), (2.6)
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which improves detection in case of clutter edge or in the presence of an additional target on
one side of the sliding reference window [31]. This results in a good detectional performance,
however, as the interference level is always underestimated a high Pr4 is to be expected in
non-homogeneous conditions. There exists a large number of other methods including censored
mean level (CML-CFAR) detectors [32, 33] where the largest samples in the reference windows
are excluded before the background mean is computed. Removing the greater values improves
detection in presence of multiple close targets but otherwise comes at the expense of Pr 4 due to
an undervalued vy estimate. In previous works, [21, 22] it was demonstrated that a neural network
could be trained to mimic the classical CFAR detectors with reduced number of incorrect detections
but the Pp could not be increased. Building upon this capability one can move forward to a new
type of detection process where the detector is altered to provide a very high level of Pp, alongside
a much enlarged Pr 4. This can be viewed as the first step in a two part cascaded classification
process, where in the first stage, the designated detector synthesizes a very coarse decision. In the
second step only positive detections are evaluated by a trained neural network to determine if the
bin (CUT) qualifies for a detection or not. The procedure implemented by the secondary network
classifier is not contingent upon a particular detector but the first detection upper-bounds the Pp
performance of the system and the network is only taught to identify false detections with respect to
a given detector. In this text, we limit ourselves to the modified version of the classical SO-CFAR
detector as it can be used to demonstrate the applicability on both noise-only and clutter based
scenarios. This detector may readily be replaced by other type of detectors; preferably, as long as
the detector can be tuned to yield a larger or fewer number of correct and incorrect detections.
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3 System design

The methodology of the two-step detection and classification process is described in this chapter.

3.1 Step 1: CMSO-CFAR detector

As the initial first step detector we utilize a modified version of the censored mean level detector
combined with SO-CFAR, denoted herein as CMSO-CFAR. In this detector, the N outermost
elements of the right and left side of the sliding window x(u) are sorted in two blocks in increasingly
order

X1 (u) = sort(x(1) ... x(N)) 3.1
and
Xo(u) = sort(x(N+2G +2) ... x(2N +2G + 1)). 3.2)

From each block only the first P, 1 < P < N, lowest value samples are taken into consideration in
estimating the two mean averages,

P P

O DICTONEE Y Y AT) (33)
k=1 k=1

The smallest of these two averages is selected y = min (71, y>) as the estimate to be applied by
equation (2.2). The performance of this detector will be contingent on the choice of P. A selection
of P = N leads to the standard case of SO-CFAR while at the other extreme P = 1 implies an
unrefined estimate of the background noise or clutter. A small choice of P, nevertheless, is befitting
for detection of multiple closely spaced targets and detection in non-homogeneous settings. The
reference level y can be rather forgiving in CMSO-CFAR but operates as a regulator of when it is
justifiable to train and evaluate a cell by the neural network. A complementary objective of the
detector is to make certain that not the complete range-Doppler map requires inspection by a neural
network which would lead to a more computational expensive operation.

3.2 Step 2: neural network classifier

In the second step, all positive outcomes from the initial detector are processed by a neural network.
If the detector returns a positive value, only then selected range-Doppler data, from the neighborhood
of CUT, is supplied to the network. Consequently, the output from the neural network determines if
a target detection at CUT is declared or not.

The aforementioned CMSO-CFAR test is formulated to operate in the range dimension only,
however, for the neural network several other choices can be made on what type of data it should be
dispensed from the range-Doppler map. We consider three different options, namely O1, O2, and
03 where the data fed into the network is specified by r and follows:

—Ol:r=(x(1) ... x(N), x(N+G + 1), x(N+2G +1) ... x(2N +2G + 1)), 2N + 1 values
corresponding to the sliding window reference cells and the value in CUT

- 02:r=(x(1)...x(2N+2G + 1)), 2N +2G + 1 values corresponding to the sliding window
reference cells, including guard cells, and the value in CUT
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—03:r=(x(1) ... xN+2G + 1), D(¢,1 ... M)), 2N +2G + 1 + M values corresponding to
the sliding window reference cells, including guard cells, the value in CUT and the M values
from the Doppler profile for the particular range-bin.

Figure 3.1 provides an illustration of range-Doppler sliding window data interconnected with a
fully connected neural network. With the first option (O1) the network is only fed the identical
information as utilized by a standard SO-CFAR test while with the second option (O2) the guard
cell data is also incorporated. Guard cells can potentially contain useful information for target
identification due to potential range walk and range sidelobes originating from the pulse spreading
function. Similarly, targets tend to spread out in Doppler, subject to the applied tapering window,
and the statistical information on target impacting neighboring cells can be taken into account by a
neural network. With the third option (O3), the neural network will be fed all M samples from the
Doppler profile in addition to the 2N + 2G + 1 values from the CFAR range window. The auxiliary
data of O2 and O3 has always been available for detectional purposes, but it is not analytically
discernible how this can be utilized to improve the target detection process; this is nevertheless a
task ideally suited for neural networks who can internally construct intricate models. In all cases,
the input samples to the neural network are normalized by min max normalization,

" r — min(r)
= ) 34
' max(r) — min(r) (34)
The output from the last layer of the neural network, a single value output,
k= fnn(F), (3-5)

returns a detection estimate. f n (F) represents the neural network modeled as a function with an
input given by the normalized data #. A threshold test is applied on « and if exceeded a detection is
declared.

For supervised training of the proposed network we assume that a collection of L independent
range-Doppler maps Dy (¢, w), ...., Dp (¢, w) have been acquired wherein the targets and their
positions in range and Doppler are known precisely (i.e. ground truth). A database is thereupon
constructed based on realizations of CMSO-CFAR tests and window samples who lead to positive
detections. A number of samples are collected for when the detection process returns a correct
decision and when the detector returns a false positive. The training objective of the neural network
is to distinguish between these two cases and to return either O or 1:

1, CMSO-CFAR: correct decision

0, CMSO-CFAR: false positive,

where & is the aimed output from the neural network. This training process forces the network to
evolve a statistical mechanism to separate between the two type of detections. We remark that the
condition for a correct decision must also include neighboring cells if a target spreads out in range
and/or Doppler due to sidelobes and if the initial detector returns a positive outcome. The objective
behind the neural network training is not necessarily to retain the same Pp as for CMSO-CFAR but
to exploit it to maximize the detection capability with a satisfactory low false alarm rate.

For a generic type of network training the training database should contain a wide variety of
samples in order to learn to recognize different situations. This is particularly important if the
network is trained on data including gap cells and/or Doppler profiles as the network can become
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Figure 3.1 Schematic description of the detection process and data linked with a neural
network.

highly specialized with respect to these inherent features. To attain better control over this, the
various samples within the training database may be split into multiple categories when the initial
detector returns a positive result. Possible categories for positive and correct CMSO-CFAR can be:
target in noise-only environment, target in clutter region, target with the presence of another target
in the reference cells, target with clutter edge on the right or left side of the reference cells and so
forth. Similarly, different categories can be established for incorrect decisions, such as false positive
in noise-only environment, false positive due to presence of clutter etc. A fair balance between
these groups is important if the network is expected to perform equally well on all situations. In a
simulated environment a good counterbalance can be achieved by making certain that the various
situations all occur with equal likelihood. A neural network training based on the above criteria is
in principle an optimization process with the objective to minimize the overall error of the network
which can be decomposed as,

AN BN
min fyy g = Z(|fNN(J?A,k)| -1)%+ Z | v (Ea.0l% (3.6)
=1 =1

where Ay and By refers to the number of samples for correct or false positive detections with
the sliding window samples denoted by X4 x, k = 1,...,Ay and Xp ¢, k = 1, ..., By for the two
categories.
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3.3 Choice of neural network

The number of input parameters to the network will be limited between 2N + 1 entries (O1) up to
2N +2G + 1+ M values in case of O3. As the amount of input data is rather limited, we use standard
fully connected feedforwarding networks for the machine learning part as these networks are able
to approximate any arbitrary operator [34]. The output from a node of the network is therefore
connected to every other node in the next layer. The network will consist of an input layer, an output
layer with a linear transfer function and one or two hidden layers with hyperbolic tangent sigmoid
activation functions. The output layer is to contain a single node as a binary detection estimate is
desired. The number of hidden layers and nodes may be varied and will be discussed in the next
chapter though very large networks are not desirable as they can potentially lead to overtrained
networks. Contrarily, very small networks may not be able to distinguish well between true targets
and false detections.
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4 lllustrating examples and discussion

Neural network training is a highly data driven approach and the results will therefore depend on
the type of input data and the constructed scenario. This chapter nevertheless exemplifies how
the presented framework can be put to use under both noise-only and clutter oriented scenarios.
In a practical setting, a radar can be set up to collect data over longer time intervals where one
has accurate control over location of real targets. This can in turn be used to train networks to
discriminate between true and false detections. Collected data may also be merged with simulated
data based on radar properties and expected form or structure of targets. Continuous collection of
data and re-training of networks can then be carried out on regular intervals to update the system
and keep it up to date.

The focus of this report is on the theoretical aspects and parts of a pulsed radar system are
simulated in slow-time to train neural networks under the proposed methodology and the performance
is evaluated against traditional SO-CFAR and GO-CFAR detectors alongside CMSO-CFAR. The
radar is assumed to transmit and receive M = 16 pulses with a range window of R = 300 range bins.
In total, 11 independently fluctuating targets are modeled being placed at various range bins. The
targets’ reflectivity is assumed to follow a standard Swerling 1 model where the mean is varied
randomly during training to mirror different power levels. The clutter shape parameter is randomly
selected uniformly for each dwell to be in the range between v = 0.05 (spiky) and v = 10 (Rayleigh
distributed) [35]. The clutter values are then arbitrary generated and modeled with a K-distribution
function [20] to cover the first half of range bins and are additionally formed with a propagation
factor to provide a dip in the clutter region. A random process additionally up or down scales the
clutter to implement a greater variation in signal-to-clutter ratio from dwell-to-dwell. Noise is
modeled as white Gaussian noise and to simulate noise-only scenarios, the clutter modeling aspects
are discarded. For construction of the range-Doppler map the Hamming window is put to use.

We refer to figure 4.1 for an example range-Doppler map where all 11 targets stand out and are
designated from A to K. In the figure, the clutter component is included and can be seen on the
left side. Targets A, B, C, H, I and J can be considered to be in a clutter dominated range region
and their velocities are randomly selected to be within -45 m/s to 45 m/s. For other targets, the
velocity range is set between -65 m/s to 65 m/s. Targets A, C and H are within the vicinity of a
clutter edge and their range placement is randomly determined to be between O to 9 bins to the
left or right of range bins, respectively, 60 or 160 at the start and end of the second clutter region.
Positive detection samples will thus experience cases of clutter edge with different distance from
CUT from both sides. Targets D, E, F and I, J are closely spaced with identical velocities, but
the distance amidst is randomly set between 3 to 10 range cells. With a probability of 0.5 these
closely spaced targets have equal power levels while otherwise they all fluctuate randomly. Closely
spaced targets are thus modeled with both matching and dissimilar reflecting values. We further
remark that targets A,H, B,J and G,K are placed on the same range bin. This is important to make
certain that when a network is trained on incorporating the Doppler profile (O3), then the network
does not erroneously make the assumption that only a single target can be encountered on a given
range-bin. The simulated scenario is set up so the different type of targets in noise-only and clutter
regions, targets in clutter edges or single or closely spaced targets are accounted approximately
once in a proportionally manner. The few exceptions are related to targets who occur twice in
the same range-bin, such as targets G and K who are both single targets in noise-only region. All
targets are moreover modeled to have a single sidelobe in range of -23dB on adjacent bins and
with a probability of 0.5, range walk is simulated with a target spreading across two range-cells.
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Figure 4.1 Simulated range-Doppler map

If the target is designated to spread out in range, then the neighboring cell instead determines
an independent Swerling 1 value from the same distribution. Simulating target spread does not
alter the performance of a standard CFAR detector with guard cells, however, a neural network
can then not simply recognize a target by an expected fixed sidelobe level in bordering cells. The
noise floor during simulations is also not kept fixed, rather ranges between —80 dB to —115 dB
following a uniform distribution between CPIs. The variation in the above setup, particularly from
dwell-to-dwell, captures a broad type of both simple and challenging detectional conditions which
should be suitable for training and evaluating a generic type of detector.

After the formation of a range-Doppler map, a detection process is performed with the CFAR
parameters being set as G = 3 guard cells and N = 9 averaging cells on each side with a thresholding
factor of 14dB. Two values of P = 3 and P = 6 were selected for CMSO for two independent
realizations of training and evaluations. To construct the training database, true and false positive
detections were taken as encountered sequentially by CMSO-CFAR and new random range-Doppler
maps were generated for as long as required. A total of Ay = 100000 positive detections were
collected while the number of false positive collected detections was set to By = 1000000, resulting
in 1.1 million entries for the training set. The ratio between incorrect and correct detections
symbolizing the much larger number of false detections who arise with the application of CMSO-
CFAR. For clutter scenarios, the number of false detections were grouped in two, half of the false
detections occurring in the clutter region and the other half in the outer noise-only region. The
target SNRs over all dwells ranged from —40 dB to 70 dB while the SCR varied between —60 dB to
60 dB when clutter was included.

For neural network training, all three data options were considered with two different sizes; a
small 50x1 network with one hidden layer of 50 nodes or a bigger 50x2 network with two hidden
layers The selection of 50 nodes in a layer was made as it roughly corresponds with the O3 input
being set at 41 entries. For a fair comparison, the same network sizes were also kept for O2 and O1
selections. Even bigger and deeper networks were also investigated, however, the performance was
found to be generally very comparable to the 50x2 networks. Training was carried out using the
scale conjugate gradient algorithm over both noise-only and clutter plus noise scenarios. The full
data was put to use for training, without any division into different sets for training or validation,
over a total of 1 million epochs. To inspect how training actually transfers over to detectional
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performance on untrained data, a larger set of 6500 range-Doppler maps was constructed adopting
the formerly described principles, but with a set mean power value for the targets. Each map
was evaluated in full through different detection methods and the trained neural networks to build
up statistics. This process was repeated with varying average target power levels to obtain Pp
and Pr 4 curves with respect to mean target SNR or SCR. Pp was calculated as the number of
correctly detected targets relative to the total number of simulated targets while Pr 4 as the number
of incorrectly detected targets in relation to total number of tests (26.2 millions per SNR/SCR). The
network threshold was fixed at k > 0.8 which represents an outcome with high degree of certainty.
Other values of « can be chosen to shift the curves up or downwards [29].

Data option and network size | P =3 P=6
01, 50x1 0.012815 | 0.010665
02, 50x1 0.004880 | 0.003529
03, 50x1 0.001576 | 0.001104
01, 50x2 0.009597 | 0.006641
02, 50x2 0.002912 | 0.001334
03, 50x2 0.000273 | 0.000031

Table 4.1 Neural network training errors, noise-only training

4.1 Noise-only scenario

If a sensor operates mainly in a homogeneous environment, then the described clutter modeling
aspects can be eliminated to detect single and dense targets in noise. Training on only noise provides
opportunity to understand the behavior of neural networks and the classification process in a simpler
context. Later, the performance can be compared against a network trained on both noise and clutter.
The network convergence error rates after a completed training process are given in table 4.1 for the
noise-only case. Training over O2 dataset gives several times improvement over O1 while a further
enhancement is attainable by using O3. The error rates for P = 6 are lower than for P = 3 pointing
towards the fact that a low selection of P can result in a very large number of incorrect detections
who are more difficult to classify. Two layer networks generally yield lower error rates though the
improvement could stem from either the ability to detect more targets correctly or identify more
false detections.

Subsequent training, results from the evaluation process executed over the untrained dataset of
range-Doppler maps are given in figures 4.2 and 4.3 where the top plot depicts the Pp curves while
the Pr 4 curves are on the lower plot. The x-axis follows the average SNR in dB with fluctuating
Swerling 1 targets. We remark that the Pp values are quite low, even at high average SNR, as the
scenario shown in figure 4.1 is quite demanding and none of the detection methods can provide fully
satisfactory outcomes for detecting multiple closely spaced target and targets embedded in clutter.
The random fluctuation in SNR makes it even harder to obtain high detection rates. Nevertheless,
the best Pp performance stems from CMSO-CFAR (dashed magenta) which also yields the highest
Pr 4. At the other extreme, GO-CFAR (magenta with diamonds) gives the lowest false alarm rate
at the expense of lowest detectional capability. The standard SO-CFAR (solid black) performs
in-between these two extreme detectors. Results of classification of CMSO-CFAR detections from
the neural network trained only on references cells (O1) for 50x1 (blue starred) shows a very close
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convergence towards standard SO-CFAR for both Pp and Pg 4. Although this solution does not lead
to the detection of more than two closely spaced targets, it still becomes the best fit for the dataset
and demonstrates the network’s ability to coincide towards a classical solution if no alternatives can
be found.

The other networks in figure 4.2, who utilize the guard cells information (02, red) or guard cells
combined with Doppler profile (O3, black starred), provide a clear Pp advantage over standard
SO-CFAR and at high SNR the curves can be seen converging towards CMSO-CFAR. The false
alarm rate is well below CMSO- or SO-CFAR though remains above GO-CFAR. This validates
the basic claim that there is useful information present in guard cells and the Doppler cells. The
false alarm rate for the case of O3 50x1 trained neural network stands out as it does not follow the
CFAR property but rather behaves in an adaptive manner. At low SNR the Pr 4 performance is
more similar to GO-CFAR but attains a higher floor level at bigger SNRs. Otherwise, comparing
the smaller 50x1 networks with the deeper 50x2 networks (figure 4.3), one notices that the Pp, is
always better with the bigger networks though the false alarm rates are higher. The Pp for the O1
50x2 network is marginally better than SO-CFAR but progresses with data options of O2 and O3.
For 50x2 cases, the Pr 4 fluctuates around that of SO-CFAR. Although these networks evaluate
positive detections coming from a CMSO-CFAR detector, all of these are clearly approximating a
SO-CFAR type of detectional approach and revising it based on available extra information. With
03 it is possible to attain CMSO-CFAR detectional level for high SNR targets but the choice of O2
is also quite beneficial as an overall improvement on the traditional SO-CFAR detector. Recognizing
and detecting a target correctly, compared to labeling it as a false detection, is evidently a more
demanding task and must be based on potential information only available in the CUT, the few
guard cells and/or the Doppler cells adjacent to the CUT.

The selection of P = 3 is useful for obtaining a high probability of detection but the false alarm
rates, except for the single case of 50x1 O3, remain relative large compared to GO-CFAR. To further
curtail the Pr 4 a greater value of P can be practiced which will reduce the Pp but still be able to
handle many complex situations. For the training and evaluation process with P = 6 the results are
depicted in figures 4.4 and 4.5.

As one would predict, advancing from P = 3 to P = 6 reduces the detection capability of
CMSO-CFAR, howeyver, the reduction is quite small at medium to high SNR values. Atlow SNR the
fixed detection capability, which can be attributed to randomness, is now eliminated. To some extent,
the results mirror the previous cases of P = 3 but with a decreased false alarm rate, particularly
for the smaller networks of 50x1 (figure 4.4) who are now closer to the GO-CFAR level. In case
of O1, the Pp and P 4 are both lower than SO-CFAR but with same curve characteristic for Pp;
this solution is thus similar to a traditional SO-CFAR detector where a different trade-off is being
made between Pp and Pr 4. The use of O2 (red curve) gives a comparable Pp as of SO-CFAR
with a low false alarm error closer to GO-CFAR. The application of O3 (black starred) gives an
even more reduced Ppa < 1-1078 though the detection capability at medium SNR values is also
hampered. Using Doppler information the network manages to identify false detections well and
the training weighting is such that a reduction in Pr 4 is preferred over Pp. For the bigger networks
of 50x2 (figure 4.5) the false alarm rates are not as low, but are distributed around 1 - 107, doing
better than both CMSO or SO-CFAR, with the O3 method having a slight advantage. That a neural
network trained only on noise and utilizing the same limited information (O1) as of a traditional
CFAR detector can offer roughly identical Pp performance as SO-CFAR but with a lower false
alarm rate is an important finding here and is discussed further in chapter 4.3.

Reviewing the results on noise-only setup, we observe that for the proposed training strategy,
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Figure 4.5 Pp and P a, Noise-only scenario, 50x2 network, P = 6

even small sized networks are very capable of identifying and reducing the number of false detections
even though the starting premise may be a very coarse CMSO-CFAR detector. The detectional
performance is nevertheless strongly dependent upon how much data the network is fed. Deeper
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networks manage to reduce the number of incorrect detections though they tend to place greater
emphasis on the detectional aspects and, regardless the data option, end up offering a very similar
false alarm rate. This explains the results of [21, 22] as the improvements demonstrated there can
now be linked to the application of the O2 method. If no adjoining cell information is provided then
the trained network may converge to a standard solution (as shown for P = 3), while a lower false
alarm can still be achieved if the initial detector is more restrained (as demonstrated for P = 6).

The assertion for training of a neural network commences from a fixed detection threshold.
This is in contrast to a traditional setup, where a desired PF 4 is first determined and then one aims
to maximize the Pp. By varying the threshold level K and training multiple networks, keeping
other parameters fixed, receiver operating characteristic (ROC) curves can still be generated where
Pp and Pr 4 numbers can be compared against each others. Figure 4.6 provides an example of
such curves over the defined scenario for medium average SNR with P = 6 and both 50x1 and 50x2
networks, complementing figures 4.4 and 4.5.

As the curves demonstrate, the O3 data option provides the leading Pp/PF 4 ratios in both cases.
The deeper network (right) can deliver higher quotients, noticeably at lower Pr 4 levels whereas
the 50x1 network (left) starts off at a smaller Pr 4 as it is more fruitful in reducing false detection
when there are many of these. O2 is also able to yield outcomes better than both GO or SO-CFAR
though there are certain intervals where the effectiveness of the 50x2 network can be similar to
the CMSO-CFAR detector; a trait the smaller network does not exhibit. The O1 selection is most
applicable at medium to high Pr 4 levels, i.e. when the number of false detections from the initial
detector is small then the network can distinguish between the two classes with an advantage and
follows or exceeds the performance of traditional detectors. The choice between 50x1 or 50x2 then
depends primarily upon the aimed Pr 4. The presence of multiple closely spaced targets makes it
difficult to obtain a high Pp as observed in previous figures, however, the curves demonstrate how
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different amount of data can be utilized by a neural network for leverage while the initial detector
may remain oblivious to it.

4.2 Clutter scenario

The preceding section established some important reference points for neural network target
detection in noise-only surroundings. In a more convoluted environment with the presence of sea
or ground clutter, target detection becomes more difficult, however, the use of CMSO-CFAR is a
viable option as it can offer a high detection capability though with an inflated false alarm rate. We
do note that false detections arising from clutter are likely to exhibit certain properties and have
a statistical structure which a neural network may be able to recognize with more ease than false
detections stemming from noise. The convergence error rates after the training session, for the
combined case of noise and clutter setup, as of figure 4.1, are provided in table 4.2. The error level
decreases as the network engages with more data and as P and the size of the network is increased,
nonetheless, the networks do not adapt to the data as well as for the noise-only case (table 4.1).

Data option and network size | P =3 P=6
01, 50x1 0.020144 | 0.017909
02, 50x1 0.008889 | 0.007103
03, 50x1 0.006807 | 0.003588
01, 50x2 0.015442 | 0.012543
02, 50x2 0.006807 | 0.004495
03, 50x2 0.004720 | 0.000991

Table 4.2 Neural network training errors, clutter and noise

From the table, one may conclude that a bigger network and more input data is most appropriate
options for a neural network training, but to determine the impact on Pp and Pr 4 simulations
need to be carried out on an untrained data set as outlined previously but now with incorporated
clutter. The results from subsequent evaluation for the case of P = 3 and 50x1 network are given in
figure 4.7 while figure 4.8 demonstrates the use of larger 50x2 networks. The lower x-axis provides
the average SNR of the targets in noise-only region while the average SCR for the targets in the
clutter region is given in the upper x-axis, the resulting signal to noise plus clutter ratio being in the
interval from -21dB to 40dB.

Introducing clutter in the first half of the range-Doppler map lowers the detection capability
a little, however, the major impact is on the false alarm rates for CMSO-CFAR and SO-CFAR
who are now much higher. The trained 50x1 networks (figure 4.7) reduce the false alarm rates
substantially though this also comes with a large reduction in the Pps. Only at high SNR/SCR
the detection rates for O2 and O3 exceed standard SO-CFAR, otherwise the Pp remains below
SO-CFAR. Even though the starting point is a CMSO-CFAR detector, the O1 method is particularly
only interesting as a GO-CFAR replacement since it does better than GO-CFAR with respect to
detection while the Pr 4 remains similar to GO-CFAR. The deeper 50x2 networks (figure 4.8)
are much more successful in Pp efficiency which is well above that of SO-CFAR depending on
whether O2 or O3 method is used while the false alarm rates are all comparable to GO-CFAR. The
case of Ol is an exception as the detection capability is just beneath SO-CFAR though the Pf 4 is
significantly lower. As the false alarm rates for O1 and O2 are similar across 50x1 and 50x2 one
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can conclude that the smaller networks lack necessary resources to positively discriminate between
the various type of targets in complicated environments.
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The choice of P = 3 is a challenging situation and the results from P = 6 are given in figures 4.9
and 4.10. The smaller 50x1 networks are, as in the previous case, able to reduce the false alarm rates
greatly but with a marked decrease in the detection capability which is only on par with GO-CFAR
at low to medium SNRs. At high SNR/SCR levels the performance approaches that of SO-CFAR
with either O2 or O3. The deeper 50x2 networks of figure 4.10 yield better outcomes and although
the reduction in the average P 4 is lower it is still significantly curtailed from the original CMSO-
or SO-CFAR and float around that of GO-CFAR. The detection rates are all between SO-CFAR and
CMSO-CFAR where the highest detection capability arises from O3 with a couple of dB reduction
if O2 is employed. Both of these methods exhibit the same curve gradient as of CMSO-CFAR. The
O1 method also performs better with 50x2 compared to 50x1 although the Pp remains suboptimal
against standard SO-CFAR.

The provided figures have established some capabilities of trained neural networks for binary
classification. The Pr4 as shown in all the figures is essentially constant satisfying the CFAR
property at both low and high SNR regimes. The only exception being the case of O3 training and
the smaller 50x1 network for P = 3 where the small choice of P leads to very coarse estimation of
the noise level, as expected.

To consolidate figure 4.10, figure 4.11 displays two ROC curves for P = 6 and 50x2 networks
trained for different thresholds for two different SNR and SCR settings. Not all combinations of
Pp/PF 4 are achievable as trained networks will always try to lower the initial false alarm rate. The
best gain is recovered from the combined CMSO-CFAR and neural network detector with O3 data
strategy while O2 also surpasses the traditional detectors. The O2 method for the low SCR plot on
the left side exhibits an adaptive behavior where it converges towards standard GO-CFAR as the
Pr 4 increases. Identical to the noise-only case of figure 4.6, O1 can result in improved outcomes
but only at higher Pr 4 values which shows the importance of the sidelobe information present in
guard cells and Doppler.

4.3 Characteristic evaluation

The curves in the depicted plots demonstrate the average performance of the trained networks for
the defined scenario at various SNR/SCR levels. To further investigate how these networks would
perform for specific target conditions more detailed evaluations were carried out for P = 6. Four
different simulated setups were considered. Table 4.3 provides the numerical outcomes for the first
two situations with only a single (S) target (target C in figure 4.1) in noise-only environment or only
three multiple (M) close targets (D, E and F) in noise-only environment. In table 4.4 the results are
given for the cases with detection in mixed noise and clutter environment with either only a single
(S) target in clutter edge (target C) or only dual multiple (M) targets in clutter region (targets I and
J). Notice that this therefore becomes an overall simpler evaluation scenario with emphasis on only
either a single target or multiple closely spaced targets. One can therefore expect high detection
probability for the single target case, even from traditional methods; while the second (M) case will
be more challenging. The tables in all cases provide the mean detectional and false alarm rates
over varying SNR as described for the training stage, evaluated across 300 untrained range-Doppler
maps with approximately 103 million CFAR tests. A 0 in the table refers to a Pr4 < 9-107 and
the three bottom rows represent the fallout from traditional CFAR detection schemes.

The tables confirm the plots in establishing the progression in Pp as one moves from feeding
less data to more data i.e. from O1 to O3. Comparing the networks trained on noise-only mode
against those trained on noise and clutter (top six rows against six bottom NN rows for both tables),
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Figure 4.11 Receiver operating characteristic curves, clutter and noise scenario

Detector (trained on) | S: Pp | S: Pra |M: Pp| M: Ppa
NN (N) O1,50x1 | 0.76 [5.78-10°%| 0.34 [3.92-10°%
NN (N) 02, 50x1 | 0.80 |5.78-107%| 0.51 |1.96-1078
NN (N) 03, 50x1 | 0.82 [9.64-107°| 0.78 0
NN (N) O1, 50x2 | 0.76 |7.52-10~7| 0.64 |4.61-10~/
NN (N) 02, 50x2 | 0.81 [8.67-1077| 0.77 |3.92-1077
NN (N) 03, 50x2 | 0.82 [3.95-10"7| 0.80 |1.07-1077
NN (N+C) O1, 50x1 | 0.70 0 0.41 [9.81-107
NN (N+C) 02, 50x1 | 0.79 0 0.63 0
NN (N+C) 03, 50x1| 0.79 [1.92-10°%| 0.70 |9.64-107°
NN (N+C) O1, 50x2| 0.72 [2.89-10°%| 0.60 [2.35-1077
NN (N+C) 02, 50x2 | 0.79 {2.89-10%| 0.75 |2.02-1077
NN (N+C) 03, 50x2 | 0.82 [5.01-1077| 0.79 |5.11-1077
CMSO-CFAR 0.82 [2.43-107°| 0.82 [2.38-107°
SO-CFAR 0.77 [1.19-107| 0.62 |1.10-107
GO-CFAR 0.74 |3.85-107%| 0.09 |1.96-1078

Table 4.3  Performance comparison, single target (S) and multiple close targets (M) in noise,
P=6

those trained on noise-only yield foremost performance in clutter free environments. When the
networks trained on only noise are evaluated in clutter surroundings (top 6 rows of table 4.4) then
the comparable P4 increases, up to to the level of SO-CFAR. This is still better than that of
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Detector (trained on)|S: Pp| S: Ppa |M: Pp| M: Ppgx
NN (N) O1, 50x1 | 0.61 [2.92-107*| 0.39 [4.00-10~*
NN (N) 02, 50x1 | 0.78 [1.89-10*| 0.65 |1.95-10~*
NN (N) 03, 50x1 | 0.81 [3.77-1073| 0.69 |3.76-1073
NN (N) O1,50x2 | 0.72 [1.17-1073] 0.62 [1.47-1073
NN (N) 02, 50x2 | 0.80 [1.62-1073| 0.70 |1.76-1073
NN (N) 03, 50x2 | 0.82 [9.04-1073| 0.73 {9.20-1073
NN (N+C) O1, 50x1] 0.61 [2.51-107°| 0.41 [2.38-107
NN (N+C) 02, 50x1| 0.76 [8.59-107°| 0.62 |8.40-107°
NN (N+C) 03, 50x1| 0.77 [4.04-1077| 0.66 |4.86-1077
NN (N+C) O1, 50x2| 0.66 [3.45-107°| 0.58 [3.31-107
NN (N+C) 02, 50x2| 0.79 [4.80-107| 0.68 |4.73-107
NN (N+C) 03, 50x2| 0.81 [1.98-1073| 0.71 [1.99-107
CMSO-CFAR 0.82 [1.89-1072| 0.74 [1.90-1072

SO-CFAR 0.77 19.00-1073| 0.66 |3.85-1073

GO-CFAR 0.60 |7.63-107| 0.14 |7.03-107°

Table 4.4  Performance comparison, single target in clutter edge (S) and multiple targets in
clutter (M), P=6

CMSO-CFAR considering the fact that these networks have not been provided any clutter data for
training. Networks trained on both noise and clutter (6 bottom NN rows in both tables) offer low
Pr 4 regardless scenario, however, also yield a reduced Pp when executed on noise-only setups.
The loss is then more significant in case of O1 compared to O3, for example, comparing row 4 with
row 10 a Pp reduction can be seen of 4%-6%, while for O3, row 6 against row 12, the disadvantage
is of 0%-2%. Networks trained on a combination of backgrounds thus exhibit a loss against more
specialized networks, but this can to some extend be mitigated by a training process based on more
input information. As established in the previous sections, employing single layer 50x1 networks
generally yield lower Pr 4 compared to a 50x2 network, at the expense of Pp. Nevertheless, by
training on both noise and clutter and employing a 50x2 neural network with O2 or O3 data strategy
(row 11 and 12) one can obtain a Pp which for all evaluated cases in the tables is higher than the
one of SO-CFAR while the false alarm rates are more comparable to GO-CFAR in clutter based
scenarios and just marginally higher in noise-only conditions.

The networks trained in a noise-only mode notably provide exceptional good noise limited
detection (top 6 rows of table 4.3). The Pp performance is as good as SO-CFAR while the Pg 4 is
at the levels of GO-CFAR. The exceptions to this are related to the smaller 50x1 O1 neural networks
trained on noise-only (row 1) or noise and clutter (row 7) in both tables. The single target Pp
is closer to GO-CFAR and these two smaller networks clearly sacrifice the Pp performance of
multiple targets in order to yield an overall lower false alarm rate. This strategy, on average, works
well for the considered scenario taking account of limited capacity of the neural network. The
bigger 50x2 O1 networks (row 4 and row 10) balance out this much better and can detect dense
targets with more ease.

The 50x2 O1 network (row 4 in table 4.3) is not using any more information than standard SO-
CFAR and decreases the Pp by 1%, but with a marked lower Pr 4 demonstrating that certain types
of false detections can systematically be curtailed by only utilizing the reference cell information. To
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Figure 4.12  Two sliding window examples with incorrect SO-CFAR detection but correct NN
classification

visually illustrate this, figure 4.12 shows two randomly collected examples of sliding window data
where traditional CMSO/SO-CFAR detectors generate a false positive while the network classifies
both detections as false. In both cases the ratio between the CUT and noise floor is marginally
satisfied and the only reason why SO-CFAR returns a positive detection is due to the presence of a
few dips who aid in satisfying the detectional criteria. These type of situations can be analyzed and
later taken into consideration by a neural network during the evaluation process.
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5 Final remarks

This report presented an implementation of artificial neural networks to identify between true and
false detections. It was suggested to utilize a modified version of SO-CFAR to increase the number
of detections while also augmenting the false alarm rate. The objective of the on-following neural
network is to only study positive detections and reduce the false alarm rate to an acceptable low level.
Various strategies on how a neural network training can be accomplished were investigated in detail
and it was shown that a reduction of false alarm can typically be made with only moderate loss in the
probability of detection with respect to traditional CFAR detectors. In this regard, incorporating the
guard cell or the Doppler profile information is highly constructive for a neural network assuming
that the target and environmental specifications can be taken into account. Different trade-offs can be
achieved by adjusting parameters where smaller fully connected feedforwarding connected networks
are particularly well-suited for significant reduction of false alarm rates while deeper networks tend
to show a greater emphasis towards target detection. By altering the various parameters and e.g.
the ratio between correct and false detections different type of networks can easily be constructed to
satisfy specific needs of given scenarios.
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