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Abstract
Multi-pass cells (MPCs) have emerged as very attractive tools for spectral broadening and
post-compression applications. We discuss pulse energy limitations of standard MPCs considering
basic geometrical scaling principles and introduce a novel energy scaling method using a MPC
arranged in a bow tie geometry. Employing nonlinear pulse propagation simulations, we
numerically demonstrate the compression of 125mJ, 1 ps pulses to 50 fs using a compact 2 m long
setup and outline routes to extend our approach into the Joule-regime.

1. Introduction

Ultrashort laser pulses play a crucial role in many fields ranging from time- and frequency domain
spectroscopy and strong-field physics to surgery and welding [1]. The amplification of ultrashort pulses set
constraints on their duration imposed by bandwidth limitations. The most common ultrafast high-power
laser platforms are nowadays titanium:sapphire (Ti:Sa) and ytterbium (Yb)-based systems, providing
amplified pulses with durations ranging from a few tens of fs (Ti:Sa) to hundreds of fs (Yb). Two different
methods are commonly employed to overcome these pulse width limits: parametric amplification [2] and
post-compression [3]. The latter method relies on nonlinear spectral broadening and either simultaneous or
subsequent temporal compression. Various spectral broadening methods have been commonly used
including nonlinear propagation within a single [4] or multiple plates [5], within solid-core [6] and
photonic crystal fibers [7], hollow-core capillaries (HCCs) [8], filaments [9] or slab waveguides [10].
Recently, a new method based on nonlinear spectral broadening within multi-pass cells (MPC) was
introduced [11, 12]. The method offers high transmission [13, 14], high-power handling [14, 15], excellent
beam quality [13, 16] and large compression ratios [16, 17] while being easily adaptable to a large variety of
laser pulse parameters including durations ranging currently from 10 ps [18] to few-cycles [17, 19, 20] as well
as pulse energies ranging from a few µJ [21] to more than 100mJ [22].

A key challenge is the adaption of high-performance post-compression methods to high pulse energies.
In particular, advancing post-compression methods into the Joule-class pulse energy regime could enable the
application to strong-field physics with the potential to overcome peak power limitations of chirped-pulse
amplification [23]. While approaches like HCC, MPC or filament-based methods can in principle be scaled
to very high pulse energies [24], the required setup-sizes become impractically large. Alternative approaches
have employed thin films as nonlinear media to spectrally broaden Joule-class pulses [23]. These methods
suffer, however, from reduced beam quality compared to HCC and MPC-based methods and only small
compression factors could be reached so far. Spatial and/or temporal pulse multiplexing methods have also
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been suggested for pulse energy scaling [25, 26], increasing, however, system complexity especially at large
multiplexing factors.

Here we outline basic geometrical energy scaling principles for MPCs and introduce a novel pulse energy
scaling method. Our approach enables compact setups while maintaining advantageous properties of
standard MPCs such as high throughput, high compression ratios and excellent beam quality. Using
nonlinear pulse propagation simulations, we demonstrate compression of 125mJ, 1 ps pulses at 1030 nm to
50 fs using a compact setup of 2 m length while maintaining a reasonable fluence at all mirrors. Moreover, via
analytical energy scaling relations, we present routes to scale our approach to Joule-class pulses and present a
first numerically tested example configuration at 1 J.

2. Pulse energy limits of standardMPCs

We start by considering a standard Herriott-type MPC [27] with two identical concave mirrors with radius
of curvature R placed at a distance L as discussed e.g. in [28]. A reentrant beam pattern with N round trips
through the MPC can be reached by obeying the simple relation [27, 29]:

C=
L

R
= 1− cos

(
πk

N

)
, (1)

with k= 1, . . . ,N− 1 denoting a variable integer which is related to the angular advance of consecutive beam
spots on one MPC mirror ξ = 2πk/N [27]. In order to obtain a q-preserving MPC ensuring similar
nonlinear pulse propagation characteristics for each round trip, the input beam needs to be mode-matched
to the eigenmode of the MPC, which is identical to the mode of a corresponding cavity. Considering basic
properties of a two-mirror cavity, the fundamental Gaussian eigenmode can be derived by solving the
identity condition for the Gaussian beam parameter q= (M1q+M2)/(M3q+M4) withMi denoting the
elements of the ABCDmatrix for a single round trip through the cavity. The corresponding focal spot radius
w0 of a linearly mode-matched beam (neglecting the impact of Kerr lensing on the MPC eigenmode) can be
written as:

w2
0 =

Rλ

2π

√
C(2−C) =

Rλ

2π
sin(πk/N)

k/N→1
≈ Rλ

2N
, (2)

expressed as a function of the integer variables k and N for a reentrant beam pattern or more generally as a
function of the configuration parameter C= L/R, which can also be used for non-reentrant MPCs. Mode
matching is possible for stable resonators, i.e. for 0< C< 2. Equation (2) also provides an approximate
solution for the typical operation condition close to the outer stability edge at k= N− 1 in the limit N→∞.
Here and in the following, we use the simplified notation k/N→ 1 to express this limit. In this limit, the
focal spot size w0 is minimized and the beam spot size at the mirrors wm reaches a maximum. Using simple
Gaussian beam equations wm can be derived from equation (2) yielding:

w2
m =

Rλ

π

√
C

2−C
=

Rλ

π
tan(πk/2N)

k/N→1
≈ 2RλN

π2
≈ LλN

π2
. (3)

In order to spectrally broaden an input pulse, a nonlinear medium such as a gas or a glass plate can be
inserted into the MPC. Considering self-phase modulation-based pulse propagation governed by the
intensity-dependent refractive index change∆n= n2I, the pulse energy E can be increased while
maintaining key broadening characteristics by decreasing the nonlinearity. For gas-filled MPCs, the gas
pressure p provides a simple way to tune the nonlinear refractive index n2 ∝ p. For constant setup size,
energy up-scaling is however limited by the laser-induced damage threshold (LIDT) Fth of the MPC mirrors
and by the focus peak intensity I0 setting a limit via ionization at a threshold intensity Ith. Peak fluence at the
MPC mirrors and peak focus intensity of a linearly mode-matched beam can be calculated as:

Fm =
2E

Rλ

√
2/C− 1=

2E

Rλ

1

tan(πk/2N)

k/N→1
≈ πE

RλN
, (4)
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4P

Rλ

1√
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=
4P

Rλ

1

sin(πk/N)

k/N→1
≈ 4PN

πRλ
. (5)

The maximum laser pulse energy thus reads as:

Emax <min

[
FthRλ

2
√
2/C− 1

, IthRλτ
1

4

√
C(2−C)

]
. (6)
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Figure 1. (a) MPC setup length as a function of pulse energy considering limitations arising due to the mirror LIDT and focus
intensity for a standard Herriott-type MPC with reentrant beam-pattern and k/N= 14/15. The colored markers indicate
example configurations at 5, 10 and 200mJ using 1 ps input pulses at 1030 nm. The corresponding broadened spectra and
compressed pulses (Fourier transform limit) simulated using three-dimensional nonlinear pulse propagation are shown in
(b) and (c), respectively. The offset in (b) and (c) is introduced for clarity.

Taking the example of an MPC with R= 1 m operated close to the stability edge with k/N= 14/15,
λ= 1030 nm and pulse width τ = 1 ps, and considering a mirror damage threshold of Fth = 500mJ cm−2,
we obtain an energy limit of 24.5mJ and a corresponding peak focus intensity of 4.6 · 1013W cm−2 at an
MPC length of L= R ·C= 1.978 m.

In order to increase the pulse energy beyond this limit, the inequalities in equation (6) indicates multiple
tuning parameters: C (tunable via k/N), λ and R. For k/N→ 1, Fm decreases but I0 increases. While the
fluence-based pulse energy limit can thus be increased, ionization effects in the focus limit the maximum
pulse energy for gas-filled MPCs. In addition, the MPC imaging properties at the stability edge k/N= 1
prevent homogenization of the spatial beam profile during the broadening process. Earlier works reporting
the operation of MPCs at the stability edge (equivalent to a 4 f imaging geometry) yielded reduced spatial
beam quality characteristics at rather low compression ratio [30]. Both limits defining Emax scale linearly
with λ, thus allowing larger pulse energies for longer wavelengths if Fm can be kept constant.

The practically most effective pulse energy tuning option for a standard MPC is provided by the setup
size, represented by R in equation (6), showing a straightforward linear scaling relation for the maximum
pulse energy. Scaling the pulse energy linearly with setup length enables not only a constant intensity at the
mirrors and in the focus, it further ensures fully scale-invariant spectral broadening characteristics provided
that the pressure is reduced linearly with increasing pulse energy. The fundamental principle behind this
energy scaling method is outlined in a more general context in [24] and can be motivated by basic scaling
properties of the nonlinear wave equation, which can be used to describe the nonlinear pulse propagation
process inside the MPC. In paraxial approximation and considering a Kerr-induced nonlinear polarization
P̂NL, this equation can be written for the field envelope Ê as [24]:[

∂

∂z
− iλ

4 πn
∆⊥ − i

2π

λ
(n− 1)

]
Ê =

iπ

nλϵ0
P̂NL(ρ), (7)

where n,λ,ϵ0 and ω,ρ denote refractive index, vacuum wavelength and permittivity as well as angular
frequency and gas density, respectively.∆⊥ denotes the transverse radial Laplace operator. Taking into
account linear pressure dependencies (n− 1)∝ ρ, P̂NL ∝ ρ and neglecting the weak pressure dependence of
n in the denominator of the diffraction and the nonlinear terms, it can be shown that any solution of
equation (7), Ê(rη,zη2,ρ/η2) is fully scale-invariant if longitudinal coordinates z, radial coordinates r and
the gas density are scaled appropriately with pulse energy E∝ η2, using a general scaling parameter η.

We thus obtain fully scale-invariant spectral broadening characteristics which do not depend on the laser
pulse energy if setup size and gas density are scaled appropriately with pulse energy [24]:

R,L∝ E

ρ∝ 1/E. (8)

Most importantly, there is no fundamental upper limit for the pulse energy via geometrical setup size
scaling. In practice the limit is simply the setup size itself, as illustrated in figure 1. While setup lengths in the
order of 1 m can be employed to compress 1 ps pulses with about 10mJ, the setup length would increase to
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Figure 2. (a) Commonly used circular beam patterns at the focusing mirrors together with a linear beam pattern as used for the
BT-MPC. (b), (c) Illustration of multi-pass beam pattern geometries for a standard MPC (b) and a BT-MPC (c). In (b), (c) the
beam path projections onto the vertical plane (top panels) and the corresponding projections onto the horizontal plane (middle
and bottom panels) are shown, visualizing example configurations with three and nine times folded paths for the BT-MPC (c).
Note that the top panel beam path is simplified for clarity: the beams along L2 (blue) folded via plane mirrors (PMs), are depicted
as straight paths between the focusing mirrors (FMs) instead of folded paths.

20 m for 200mJ, making further energy scaling impractical. Conversely, energy down-scaling is possible via a
geometrical setup size reduction as indicated in figures 1(b) and (c) for 0.5mJ, spectrally broadened in a 5 cm
setup. Similar scaling principles can also be applied to bulk-based MPCs. As the density of the nonlinear
medium cannot easily be changed, deviations from perfect scale-invariance can however be expected.

3. Bow tie multi-pass cells

We now introduce a pulse energy scaling route, which circumvents the above discussed setup size limitations.
We employ known design principles for optical resonators, where large mode sizes can be achieved in a
folded cavity design. Applying those principles and placing all folding mirrors in sections of large beam sizes,
allows us to construct MPCs of compact size which support high pulse energies.

One of the most simple generalizations of a two-mirror resonator is a four-mirror resonator, often
arranged in a so-called bow tie configuration. We here consider a corresponding bow tie MPC (BT-MPC)
using two identical concave mirrors and two (or more) plane mirrors. This way, an MPC can be constructed
for which the optical path L1 from mirror 1 to mirror 2 has a different length compared to the returning path
L2 ̸= L1, as illustrated in figure 2. A typical bow tie configuration would be reached when L2 is folded by two
plane mirrors. Generally, a BT-MPC can be arranged in different geometrical configurations. Figure 2
displays an example configuration utilizing a linear multipass pattern at the focusing mirrors in contrast to
standard Herriot-type MPCs, which are usually arranged with circular pattern. As discussed by Herriott,
elliptical or even linear patterns are easily possible depending on the input beam conditions [27].

Similar to equation (1), a general equation describing the solutions for a reentrant beam pattern in a
BT-MPC with two identical concave mirrors of radii R and two or more planar folding mirrors can be
derived. A reentrant MPC can be obtained if (M̃∗)N = Ĩ, where the ABCDmatrix M̃∗ describes a single
round trip through the MPC and Ĩ denotes the unity matrix with its elements AN = DN = 1. An equation
describing the reentrant MPC can be found via the Gouy phase ξ accumulated during N round trips through
the MPC [31]:

ξN = sgn(BN)cos
−1

(
AN +DN

2

)
. (9)

With (M̃∗)N = Ĩ, equation (9) predicts the condition ξN = 2πk with k denoting a variable integer. Assuming
an optimized configuration where the beam acquires the same Gouy phase per pass through the MPC, we
obtain for a single round trip:

ξ1 = 2πk/N, (10)

By solving equation (9) for N = 1 taking into account equation (10) and a suitable (M∗) describing the
BT-MPC we obtain:
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Figure 3. Stability diagram for the bow tie MPC showing the Gouy phase accumulated per pass through the MPC. The dashed
black lines indicate reentrant input-to-output 1:1 imaging conditions for an example configuration with N= 15. The standard
MPC parameter space with L1 = L2 is indicated with a black diagonal line. Beam pattern geometries (red) and corresponding
cavity modes (gray areas, scaled in diameter to match the pattern size) shown for four important example configurations for
constant L1 and variable R.

C1 +C2 −C1 C2 = sin2(πk/N) with k=

{
1,2, . . . ,N/2− 1, if N is even

1,2, . . . ,(N− 1)/2, if N is odd
, (11)

with C1,2 = L1,2/R defined analogously to equation (1). The solutions of equation (11) C1 = C1(C2,k/N) are
shown in figure 3 (dashed black lines) using the example of N = 15 for k= 1,2, . . . ,7. We consider in the
following the parameter range C1,2 > 1 with a tightly focused short beam path along L1 and a weakly focused
beam along L2, i.e. L2 > L1. It can be shown that equation (11) describes lines with constant stability
parameter G. Here, G is defined analogously to resonator optics as G= |(A+D)/2|= cos2(πk/N) with A
and D denoting elements of an ABCDmatrix describing a single round trip through the MPC. Figure 3 also
displays the accumulated Gouy phase ξ after a single pass through the MPC. The white areas mark regions
outside the stability range (G> 1). Equation (11) convergences towards equation (1) for L1 = L2,
representing the standard two-mirror Herriott cell. At the stability edge for k/N= 1, the BT-MPC converges
towards a 4 f imaging configuration as explored in [30].

We now calculate basic properties of the BT-MPC assuming linear mode matching, i.e. neglecting Kerr
lensing effects in the MPC. This simplification enables the derivation of simple analytical equations.
Depending on the operation regime, Kerr lensing effects need to be taken into account to allow an accurate
estimate of the MPC parameters [32, 33], as shown in section 4. The focal spot radii w01,2 of a beam linearly
mode-matched to the fundamental Gaussian eigenmode of a BT-MPC can be calculated as:

w2
01 =

Rλ

4π

| sin(2πk/N)|
C2 − 1

k/N→1/2
≈

N odd

Rλ

4N(C2 − 1)
, (12)

w2
02 =

Rλ

2π
(C2 − 1)| tan(πk/N)|

k/N→1/2
≈

N odd

RλN

π2
(C2 − 1), (13)

where w01,2 denote the two foci with w02 > w01 for L2 > L1. The above equations display approximated
solutions for k= (N− 1)/2 in the limit N→∞ considering an odd integer N. Again, we use a simplified
notation to express this limit: k/N→ 1/2 with N odd. The limit denotes the operation condition for which
the spot size ratio w02/w01 and the beam sizes at all mirrors are maximized. Note that the mirror spot size for
a standard MPC is maximized for k/N→ 1 instead. For large w02 , the beam along L2 appears approximately
collimated, i.e. wm ≈ w02 with increasing beam diameter as L2 increases. A collimated beam along L2 brings
along an important advantage of the BT-MPC: the beam path can be folded without increasing the
maximum mirror fluence, providing great opportunities for the construction of compact MPC systems as
the system length is only determined by L1 ≈ R. Assuming linear mode-matching, the fluence at the focusing
mirrors can be estimated as:

F∗
m =

4E

Rλ(C2 − 1) tan(πk/N)

k/N→1/2
≈

N odd

2πE

RλN(C2 − 1)
. (14)
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Figure 4. (a), (b) Fluence-limited laser pulse energy for a BT-MPC displayed as a function of L1,2 considering R= 1m with
(b) showing a rescaled section of (a). (c) Fluence-limited pulse energy as a function of C2 for different setup lengths L1. In (c), we
also display the corresponding peak power assuming compression to 50 fs. The black circles indicate the fluence-limited pule
energy of a corresponding standard MPC. Parameters used: N= 15, k= 7 (c), Fth = 0.5 J cm−2.

The corresponding maximum focus peak intensity occurring at the focus along L1 reads as:

I∗01 =
8P(C2 − 1)

Rλ| sin(2πk/N)|
k/N→1/2

≈
N odd

8PN(C2 − 1)

πRλ
. (15)

While the beam spot sizes at the mirror surfaces increases with L2 causing a decreasing fluence, the focus
peak intensity at the tighter focus intersected by L1 increases. Ionization at the tight focus of the BT-MPC can
be avoided by operation inside a vacuum chamber at a low residual gas pressure. For spectral broadening one
or multiple glass plates can be placed within a section of the MPC with large beam diameter. Thus, the
fluence on the mirrors is the only pulse energy limit:

E∗
max ⩽ FthRλ(C2 − 1)

| tan(πk/N)|
4

k/N→1/2
≈

N odd

FthRλN

2π
(C2 − 1). (16)

With increasing L2, E∗
max increases reaching values above 1 J for L2 = 100 m and L1 ≈ 1 m as illustrated in

figure 4. In figure 4(c), the fluence-limited E∗
max is displayed as a function of C2 for different system lengths

L1 together with the corresponding peak power reached assuming for simplicity a Gaussian pulse shape and
compression to 50 fs. At large asymmetries L2/L1, the collimated beam path along L2 has to be folded many
times in order to keep the system compact. This is possible using today’s multi-layer mirror technology
supporting pulse durations of<30 fs with losses at the few-parts per million level, thus enabling system
transmissions above 90% even for a large number of mirror reflections.

For increasing asymmetry L2/L1, the stability range of a BT-MPC decreases, as visible in figure 4. This
implies increasing stability demands on the setup, in particular with respect to the distance L1. Small changes
of L1 can translate into mode-matching issues. Depending on the exact geometry, variations of L1 from
round trip to round trip may occur, in particular if geometries using linear multi-pass patterns, as illustrated
in figure 2, are used. In addition, it is advantageous to design the BT-MPC such that all angles of incidence at
the focusing mirrors are kept small in order to minimize astigmatism. While these constraints will need to be
considered for a experimental setup design, they are not setting a fundamental limit for the proposed scaling
approach using BT-MPCs. Possible solutions to circumvent these constraints may include the division of the
focusing and/or folding mirrors into multiple small mirrors, providing increased flexibility for beam angle
control, enabling e.g. to place all mirrors in a cylindrically symmetric arrangement.

4. Numerical verification of the BT-MPC scheme

In order to test the applicability of BT-MPCs to high peak power spectral broadening, we conducted
two-dimensional (2D+1) nonlinear pulse propagation simulations with the SISYFOS code assuming radial
symmetry and considering the Kerr effect (Raman and ionization are not included as these effects are not
relevant for the parameters considered). Example BT-MPC configurations were tested with a full
three-dimensional (3D+1) version of the code, confirming good agreement with the radially symmetric
code. The code was previously applied to bulk and MPC broadening simulations [32, 34]. We selected thin
silica plates as nonlinear media and consider a MPC placed inside a vacuum chamber to avoid ionization at
the focus. The fluence at the Kerr plates as well as the Kerr-lensing effect were minimized by placing the silica
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Figure 5. BT-MPC-equivalent resonator used for simulations. It consists of two sections separated by a dispersion-free lens
(M2). The plane mirrors M1, M3 are inversion centers of the BT-MPC. Section 1 represents the short arm of the BT-MPC. To
save computational costs, an equivalent path with beam inversion was simulated. Pulse propagation in the long arm (section
2), which contains the Kerr-medium (K) was simulated by nonlinear propagation.

Figure 6. Simulated broadened spectra (red), displayed in (a), (e) and corresponding temporal intensity of the compressed pulses
(orange), displayed in (b), (f), spectrally broadened in two different BT-MPCs with pulse energies of 125mJ (a)–(d) and 1 J
(e)–(h). The corresponding input beam spectra and temporal intensities are also shown (blue). The spatially resolved output
spectra are displayed in (c), (g) together with the corresponding input (blue) and output (red) spatial beam profiles as well as the
spatial homogeneities (gray), shown in (d), (h). The Fourier transform limited (FTL) pulse duration is also depicted (red),
displayed in (b), (f).

plates close to the curved mirrors in the long arm of the BT-MPC. For the simulations, a BT-MPC equivalent
cavity was considered which is shown in figure 5. Virtual plane mirrors are introduced at the symmetry
planes.

First, we simulate spectral broadening of Gaussian pulses with 1 ps duration and 125mJ energy
considering an initially Gaussian spatial beam shape. In the absence of nonlinearity, the BT-MPC consists of

7
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focusing mirrors with a radius of curvature of 2 m and an unfolded arm length of L2 = 10 m. In order to
reach a large spot size on the mirrors we consider k≈ N/2, i.e. L1 = R+ δ with δ= 2 mm. The
corresponding peak intensity in the long arm was 360GW cm−2 (360mJ cm−2). To achieve a minimum
fluence level at the mirror when Kerr nonlinearity is introduced, we apply nonlinear mode-matching
methods [32, 33]. Nonlinear mode-matching can be reached by adjusting the input beam parameters e.g. via
adjusting the input spot size at the virtual plane mirror M3. For the BT-MPC geometry considered here, this
simple approach is not sufficient to reach a fluence level at the mirrors below damage threshold. Therefore,
additional cavity length adjustments are required. Extending the long arm length to L2 = 35 m results in
spatially homogeneous broadening and only moderate fluence enhancements compatible with the damage
thresholds of the optics. The MPC length lies in the range of demonstrated solid-state laser oscillators with a
repetition rate of 8.6MHz [35]. The implementation of such a BT-MPC therefore appears feasible. Folding
of the long arm can lead to a physical length of the cavity of only about 2 m. After 34 round trips in the
cavity, a broadening factor of 20 is reached with two 1-mm thick Kerr media placed symmetrically close to
the focusing mirrors. A large round trip number is chosen to reduce the B-integral per pass required for the
targeted compression factor, as a reduced B-integral simplifies nonlinear mode-matching. The resulting
broadened spectrum is shown in figure 6(a). We test the compressibility of the pulses by simulating a
dispersive mirror compressor. A flat group delay dispersion (GDD) of−400 fs2 per bounce is added to the
full electric field obtained from the MPC simulation until the peak power was maximized. After 25 bounces a
near transform-limited pulse with a duration of 50 fs and a peak power of 1.3 TW is reached (b), assuming
an MPC transmission of 87% and a lossless compressor. Figures 6(c) and (d) show spatially resolved
spectrum, beam profile and homogeneity parameter parameter (defined as in [21]), indicating excellent
spatial output beam quality. The numerically calculatedM2 value of the output beam isM2 = 1.15. Direct
calculation ofM2 is very sensitive to numerical noise in the winds of the spatial beam profile, we therefore
use a method mimicking a realistic experimental scenario as implemented by commercially availableM2

measurement tools, i.e. considering propagation of the output beam through a focus while applying spatial
apertures with a diameter equal to twice the knife edge beam width at a 10/90 intensity fraction.

In a second study, we increase the pulse energy from 125mJ to 1 J. In order to keep the fluence on the
mirrors comparable to the previous example, a long arm length of L2 = 75 m is required in the linear
propagation regime if δ is reduced to 0.1 mm. Nonlinear mode-matching for a 1 mm thick substrate per
half-cavity results in a long arm length of 276 m, i.e. a relatively large extension comparable to the 125mJ
case. While this optical path length reaches the limits of earlier demonstrated oscillator lengths [35], it
should be noted that an MPC has reduced stability requirements compared to oscillators as no longitudinal
modes are formed. Figure 6(e) shows the spectral broadening of the 1 ps pulses after 14 round trips.
Compression is simulated taking into account dispersive mirrors with a GDD of−1000 fs2. A pulse duration
of 99 fs (96 fs Fourier transform limit) was achieved by adding a total GDD of−15 000 fs2. The resulting peak
power is 5.6 TW under the assumption of 94.5% total transmission (f). Again, an excellent spatial beam
quality is achieved at the output (g,h) corresponding toM2 = 1.08.

5. Conclusion

We have discussed general pulse energy scaling principles and limitations for MPCs employed for spectral
broadening applications and introduced a new MPC type. The new MPC design enables large beam spot
sizes at all mirror surfaces and thus operation at high pulse energies while keeping the setup size compact. In
contrast to other guided-wave spectral broadening approaches, our method supports very high spatial beam
quality despite the large pulse energies and broadening factors. Our analytical analysis shows, that highly
efficient MPC-based pulse-post compression at large compression ratios can be extended to 100mJ pulse
energies and beyond using a table-top setup. More generally, our results extend the concept of multi-pass
spectral broadening to non-standard MPCs demonstrating a viable route to greatly expand the parameter
space of multi-pass post-compression.
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