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Abstract—In NATO, the IST-168 research task group (RTG)
“Adaptive Information Processing and Distribution To Support
Command and Control” aims to investigate cloud computing at
the tactical edge from a coalition force perspective. From recent
developments in cloud computing and DevSecOps stemming
from civilian use, but also with increasing adoption for military
applications, virtualization of infrastructure and containerization
of software is currently a preferred approach to cloud computing.
Containers provide a lightweight approach to packaging and
orchestrating software components and services. Kubernetes is
a tool for orchestrating and managing deployment, scaling and
migration of such containers.

In the NATO IST-168 RTG, the emphasis is on interoperability
and interconnecting different nations’ Kubernetes clusters. The
work described in this paper presents Norway’s contribution to
the RTG.

I. INTRODUCTION

The term cloud computing is not necessarily well defined,
and so different people may attribute different meanings to
the concept of “the cloud”. For the sake of this paper, we use
the definition of cloud computing from the National Institute
of Standards and Technology (NIST), which describes cloud
computing as follows [1]:

A model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers,
storage, applications and services) that can be
rapidly provisioned and released with minimal man-
agement effort or service provider interaction.

In other words, cloud computing can be seen as a modern
and effective approach to deploying, governing, using, and
maintaining Communication and Information Systems (CIS)
resources.

The cloud computing approach has been gaining momentum
for civilian applications for several years now. Likewise,
NATO is aware of cloud computing benefits and looking to
exploit it operationally. Given that the benefits of cloud can
be applied also to military applications, this could potentially
enable more effective operations in the future. For NATO,
the prospect of more stable, more effective CIS for coalition
forces could be an enabler for more agile operations in the

future, especially with respect to interoperability and rapid
deployment.

The nature of military operations introduce new challenges
to cloud computing that are usually not seen in civilian
applications, notably the notion of CIS services, and the vision
of cloud services, at the tactical edge [2]. Simply put, “the
tactical edge is where users operate in certain environments
that are constrained by such things as limited communications
connectivity and limited storage availability [3]”. In NATO,
the IST-168 research task group (RTG) “Adaptive Informa-
tion Processing and Distribution To Support Command and
Control” (IST-168) aims to investigate Kubernetes from a
coalition force perspective, with emphasis on interoperability
and interconnecting different nations’ Kubernetes clusters at
the tactical edge [4]. IST-168 anticipates Kubernetes to be a
prominent building block of future NATO CIS in coalition
operations, and so it is an important research question to
investigate if it is possible to achieve interoperability across
clusters owned by different nations.

The work described in this paper has been performed as
part of the Norwegian contribution to the IST-168 work. Here,
we provide our perspective on setting up Kubernetes, and
taking part in IST-168 forming a multi-national cluster, as
seen from the viewpoint of one participating nation in this
experimentally-oriented RTG.

II. RELATED WORK

The vision of network-centric operations is to increase
operational capabilities through networked collaboration. Ser-
vices are essential in service-oriented architecture1 and, more

1SOA, or service-oriented architecture, defines a way to make software
components reusable and interoperable via service interfaces. Services use
common interface standards and an architectural pattern so they can be rapidly
incorporated into new applications. This removes tasks from the application
developer who previously redeveloped or duplicated existing functionality
or had to know how to connect or provide interoperability with existing
functions [5].



recently, cloud-based architecture2, where CIS services can
be accessed at all times by very large ranges of consumers
independently of where the consumers are [7].

Kubernetes is an open source system for automating appli-
cation deployment, scaling, and management [8]. Kubernetes
can be used to ensure resilience and scalability for services
and end-systems, properties that are essential to both civilian
and military systems. It is often used to deploy services when
building modern CIS, using agile DevSecOps3 methodology.
A prominent example of this effect is the US Department
of Defense (DOD) Enterprise DevSecOps Initiative, where
Kubernetes is an important component [10]. In NATO, IST-
168 aims to investigate Kubernetes from a coalition force
perspective, with emphasis on interoperability and intercon-
necting different nations’ Kubernetes clusters at the tactical
edge [4]. This approach is referred to as federated cloud
architecture in IST-168, a concept involving Kubernetes and
defining interoperable services and open, well-defined Ap-
plication Programming Interfaces (APIs). Think about this a
military refinement of the concept of a civilian Kubnernetes
federation [11] where all clusters participate equally and share
all resources — in IST-168 we have the addition of nationally
sovereign clusters, and fine-grained control of which services
and resources to share with partners.

The motivation behind investigating a federated cloud ar-
chitecture for military systems is because it is crucial for
mission partners to have sovereignty over the infrastructure
they provide and over the data and services they host [12]. This
is due to strong security and classification policies. It includes
individual policies on how their clouds expose services and
capabilities to other nations. As well, it is each nation’s
own choice as to the type of hardware and supplier to use.
Hence, the architecture must ensure functional interoperability
and compatibility of partner clouds. Therefore, mainstream
cloud container technology is used. An industry standard
for containers was adopted, e.g., Open Container Initiative
(OCI) [13], and uses Kubernetes along with its large, rapidly
growing ecosystem [14].

Furthermore, the discovery of other nations’ cloud should
be peer-to-peer based, as this eliminates the need for a central
authority that all nations need to trust. Discovery in this
respect is not a part of Kubernetes, and so IST-168 has
been working on defining a service discovery API, which
allows for rapid experimentation and deployment, supporting a
multi-national mission context like, e.g., in Federated Mission
Networking (FMN) [15].

Finally, the federated cloud infrastructure must be able

2Microservices (or microservices architecture) are a cloud native architec-
tural approach in which a single application is composed of many loosely
coupled and independently deployable smaller components, or services [6].
Simply put, microservices can be seen as the evolution of SOA, towards
smaller autonomous services that lend themselves well to independent de-
ployment and scaling using cloud computing.

3DevSecOps is the industry best practice for rapid, secure software de-
velopment. DevSecOps is an organizational software engineering culture and
practice that aims at unifying software development (Dev), security (Sec) and
operations (Ops) [9].

to operate in mission contexts with disadvantaged networks,
including the interactions and communications for inter-cloud
connectivity. To provide functionality for deploying services to
edge devices and other compute clusters in mobile platforms
(such as a military vehicle) and managing the desired state in
these varied heterogeneous cluster environments, orchestration
over multiple platforms is required [16]. Thus part of the IST-
168 research examines whether, and to what extent, individual
clouds may span multiple nodes (e.g., vehicles or even dis-
mounted soldiers) in which case the disadvantaged network
condition also holds for intra-cloud connectivity [17].

So, in summary, the overall technical goal of IST-168 is
to have several different nations install and operate their own
Kubernetes clusters, that can be interconnected to discover and
share resources in a federation of systems. This paper provides
the authors’ perspective on participating in building and testing
such a multi-national federated system.

III. OPERATIONAL PERSPECTIVE AND SCENARIO

In IST-168, the member nations looked into cloud comput-
ing from a NATO perspective, i.e., a federation of stand-alone
national installations, and investigating how cloud computing
resources hosted by such different nations may be leveraged in
operational contexts. The background is that improved sensing
and mobile computing capabilities may lead to ever more
information and processing power being available in mission
contexts. In modern military operations, the new information
sources like military use of the Internet of Things (IoT) [18]
and overall improved sensing capabilities lead to a lot of
data that needs to be processed. Ideally, this data should
be processed near where it originated to rapidly benefit the
decision maker, so as not to have to transport it to a centralized
data center somewhere for processing. Ideally, we want to
be able to leverage mobile computing capabilities, which
again may lead to more information becoming available more
rapidly. To achieve this, an important aspect of information
superiority4 is having agile (including such properties as
robust, adaptable, capable) CIS systems. We think that a
federated cloud architecture is needed to maintain information
superiority in future NATO coalition operations.

Naturally, the use of cloud approaches should not be limited
only to coalition operations. As our national military CIS
systems evolve from old stove-piped monoliths towards mi-
croservices built using modern DevSecOps best practices, we
are rapidly moving towards a future where we can anticipate
that cloud-based architecture and cloud-native CIS systems
become the norm. The increased complexity of modern CIS
systems due to microservices and possibly decentralization
across multiple physical locations leads to a potentially less
efficient5 implementation than the old stove-pipes. But, the
gains in system resilience and the other desirable aspects of

4Information Superiority is the operational advantage derived from the abil-
ity to collect, process, and disseminate an uninterrupted flow of information
while exploiting or denying an adversary’s ability to do the same [19].

5Efficient (adj.) — Performing or functioning in the best possible manner
with the least waste of time and effort.



cloud computing, means that this is a more effective6 way
of building, deploying, and maintaining CIS capabilities than
previous architectural approaches.

Cloud computing is not limited to any specific operational
scenario, and so we think it is equally suited to supporting all
types of military CIS systems and needs. Specifically, the IST-
168 group has been looking at both land-based and maritime
scenarios [12]. Cloud computing encompasses a collection of
technologies, offering unprecedented flexibility and scalability,
and a need for new business models to take advantage of
these new opportunities. Hence, the expected benefits of cloud
services include cost savings, improved scalability, improved
security and resilience to system failure, when combined with
modern CIS using cloud-based architecture and built and
maintained through DevSecOps.

We anticipate being able to reap similar benefits for military
CIS and operations. Potential benefits to CIS include enabling
more balanced and efficient utilization of resources by off-
loading computations to more resource-capable nodes. This
in turn may lead to lowered demands on the disadvantaged
tactical network, by performing data processing close to the
data source. Finally, what we think perhaps the single most
important property of cloud computing: Improved resilience
through adaptive cloud deployment, allowing service redun-
dancy and geographic distribution for increased CIS resilience.

Benefits to military operations include increased availability
of information to all echelons. Through better use of available
resources, we make the most of resource-constrained and
communication-constrained nodes. Further, this may lead to
a reduction in data overload on the soldiers, by converting
voluminous raw data into smaller information updates. Also,
bringing cloud computing capabilities into the field and nearer
to the soldiers allows more rapid processing and use of
available information.

For the sake of this paper, we will concentrate on a land-
based scenario, which is a subset of the Anglova Scenario
[20], [21] as developed by IST-124 “Heterogeneous Tactical
Networks Improving Connectivity and Network Efficiency”
and released to the public domain. For those who don’t know
the Anglova Scenario, it consists of three vignettes:

1) Intelligence preparation of the battlefield
2) Deployment of coalition forces and surveillance
3) Urban operation, including insurgent defeat and MED-

EVAC.

Figure 1 gives an overview of the scenario. In particular,
we use vignette three — urban operation — as the frame for
the work in this paper. In short, this vignette provides a set
of sensors within the city, a number of dismounted soldiers
(resource constrained), vehicles with more capable resources
(yet still resource constrained), and finally the operations
center (plenty of resources). Overall, communications are
limited due to the urban environment and node movement.

6Effective (adj.) — Adequate to accomplish a purpose; producing the
intended or expected result.

Figure 1: Anglova scenario overview.

Figure 2: High-level overview: Federated cloud architecture.

For the sake of this paper, we consider a NATO coali-
tion operation, involving multiple partner nations, Norway
included. Each partner has its own cloud, consisting of one
or more Kubernetes clusters, where the partner clouds are
interconnected in a federation. Realizing the federated cloud
architecture, the idea is that there should be no central instance
(so no single point of failure). In the federation, each partner
hosts its own services and exposes a subset of its services to
other partners, furthermore, it can allow other partners to use
its resources.

The idea is that with standard approaches and standard
APIs, we can achieve such inter-cloud interoperability. Fig-
ure 2 illustrates three partner clouds, autonomous on their own,
but with the capability to interconnect. Recall that how each
partner realizes their particular cloud (and handles intra-cloud
communication) is left to each sovereign nation to decide and
handle. The need for agreement and standardization is limited
to the inter-cloud communication, illustrated by the arrows
between the clouds.

IV. TECHNOLOGY AND BUILDING THE NATIONAL CLUSTER

Kubernetes takes the so-called Cloud Native Security ap-
proach towards its security policies [22]. At its core, Cloud
Native Security describes the 4 C’s: Cloud, Cluster, Container,
and Code. Each describes a layer on which security measures



Figure 3: The 4 C’s of Cloud Native Security (adapted
from [22]).

are taken and which the next layer of security builds on, shown
in Figure 3.

The cloud layer describes measures that target the actual
infrastructure the cluster runs on, where the underlying hard-
ware and bare-metal hypervisors are the defining factors of
what constitutes best security practices. Drawing the parallel
to a federated cloud architecture, this part is left to each nation
to choose as they see fit.

The cluster layer is concerned with two primary objectives;
securing the cluster components that are configurable, and
securing the applications that run on the cluster. Here, un-
derlying hardware and future applications will vary, both in
terms of vendor, provider, and developer. For the sake of IST-
168 federated cloud architecture, Kubernetes was chosen as
the Cluster technology so that we had a common agreed-upon
approach that could feature interoperability across clouds.

Finally, the container and code layers describe applica-
tion run time and implementation, respectively. These layers
largely depend on the type of containers being used and the
implementation by the developer. Probably the most used
container technology today is Docker, so we have chosen that
to package code in our cluster. The container/code layers are
typically the two layers that can be considered part of the
DevSecOps methodology, whereas the cloud and cluster layers
can be considered infrastructure components.

A. Docker

Docker is a platform for building container images con-
taining various pieces of applications and services [23]. The
platform offers multiple ways for creating the images, either
by using automatic processes built into Docker or by building
it yourself.

A container is a sandboxed environment for running self-
sustained applications and services. The Docker images are
built using the containers. Similarly to containers, images
are self-sustained sandboxed applications or services. After
they have been built, they can run on any platform that
supports either Docker or Kubernetes. The self-sustainability
also means that the images are fully portable between different
operating systems and across multiple clouds.

The Docker runtime environment consists of various parts,
the main component being the Docker Engine, a software

component that hosts the containers. The Docker Daemon
is the component that takes requests from the Docker API
and manages all images and containers. It also keeps control
of networks and volumes. When using Docker on a personal
computer (i.e., Windows or Mac), the Docker Desktop appli-
cation contains all the parts of Docker and gives a one-in-all
experience. For a machine running Linux, Docker Desktop
is unavailable. Instead, images run directly on the Docker
Engine.

B. Kubernetes

Recall that Kubernetes, also known as K8s, is an open
source system for automating deployment, scaling, and man-
agement of containerized applications on a cluster.

Kubernetes is used for managing machines in a cluster by
providing a framework for organizing and deploying various
applications and services, requiring a wide variety of different
resources [24]. It can run any type of application and service,
due to its extensive usage of sandboxes for virtualization and
containerization. A Kubernetes cluster can be organized into
multiple levels of hierarchy. At the top of the hierarchy sits
the cluster itself, which is organized into one or more nodes.

When multiple nodes are configured in the cluster, they
can be split into one master node and several worker nodes.
Kubernetes nodes function like virtual machines and control
the resources used by the various applications and services
running on each node. The master node also referred to as
the control plane, is the component in charge of deploying the
various applications and services. It also defines, manages and
distributes the workload across the worker nodes. In order to
run applications and services in nodes, the applications and
services will be packed into pods running on each node.

Kubernetes pods are “the smallest deployable units of com-
puting that you can create and manage in Kubernetes” [25].
In the Kubernetes cluster, the pods are used for storing and
running the applications and services in containers. While
pods work as self-sustained environments and are generally
isolated from the rest of the cluster, they maintain the ability
to communicate and exchange data with other pods. A pod can
consist of one or more containers, but it is limited by node
size and may not be fragmented between multiple nodes.

Kubernetes ships with a variety of built-in tools for au-
tomatic deployment, scaling, and management of containers.
Docker is the most common platform for creating containers
for a Kubernetes environment.

C. Kubernetes and Docker architecture

The bottom software layer of the architecture consists of a
Kubernetes cluster [26]. The Kubernetes cluster is situated on
top of the operating system and is used to support the various
applications and services that were needed for the project. We
had five equal physical machines available for this project.
These five, all running Ubuntu 18.04.5 LTS, were named
Ubuntu 1 through 5, called U1 . . . U5 for short. Specifications
are as follows:

• HP ELITEDESK 800 G3 SFF



• 2x HDD of 1TB each (one for operating system and
runtime libraries and other software, the other for storage)

• 16GB RAM / 2GB SWAP
• Intel i7-6700 CPU @ 3.40GHz (8 CPU cores)
For this project, the Kubernetes cluster has been set up with

three nodes, one master node and two worker nodes, each
residing on a physical machine deployed at the Norwegian
Defence Research Establishment (FFI). The remaining two
computers were used as a backup in case anything would
happen to the other nodes.

The nodes were created by connecting remotely into the
Linux environment at FFI, and building the cluster using Bash
and YAML. Each node was built to the same standards using
the same script.

The architecture of Docker consists of the containers and
Docker images that were built for the project.

Figure 4 shows the Kubernetes setup of all IST-168 clusters.

Figure 4: Overview of the collaborative cluster architecture.

D. Network connectivity

Network traffic targeting the Kubernetes cluster must be
directed to its correct endpoint. Services deployed in Ku-
bernetes are commonly exposed to the outside world by
relying on a DNS server, hosted by the organization providing
the underlying hardware and network infrastructure. Thus,
configuring the cluster with proper network capabilities is the
first step to creating an interface that allows plug-and-play
between collaborating Kubernetes clusters.

Interconnecting clouds or additional external services relies
on the various network communication protocols that make up
the Internet. Thus, the cluster constructed during this project
is principally able to exchange data with external Kubernetes
clusters and services. This was a major technical aspect to
explore, i.e., the feasibility of the federated cloud architecture
as envisioned by IST-168.

In our setup, due to security policy reasons, no DNS services
were available, and the standard HTTP/HTTPS ports were not
permitted. Moreover, the cluster was running on plain Ubuntu

18.04.5 LTS computers without any supporting commercial
cloud platform (AWS, Azure, GCP...). These restrictions pre-
sented some additional configuration work to be conducted.

User traffic entering the Kubernetes system was processed
by a network load-balancer that routed the incoming query to
a specific service. Kubernetes on bare metal clusters are quite
rare thus the provided network balancers will remain pending
without support from a cloud provider. This was resolved by
using MetalLB [27], which provides the necessary network
load balancing. MetalLB is provided as a Docker image but
must be customized according to the environment it is used.
The most important features to specify is the protocol and pool
of available IP addresses.

Any Kubernetes internal load balancer requesting an IP
address will be assigned one of the addresses listed in the
MetalLB pool. Figure 5 illustrates how the Kubernetes ingress
controller manages the cluster IP addresses.

Figure 5: MetalLB manages cluster IP addresses in Lens.

E. Ingress control
In Kubernetes, a deployed microservice is referred to as

a pod, and operational pods communicate via a virtual pod
network managed automatically by Kubernetes. While pods
operate on an internal network that is not accessible by the
outside world, this is solved by linking a service to the
deployment. In Kubernetes, a service is an abstract way of
exposing applications by defining logical sets of pods and
policies on how to reach these. The most common service
types are:

• ClusterIP: This is the default ServiceType and exposes the
service onto a cluster-internal IP address, which makes
the service only reachable from within the cluster.

• NodePort: Exposes the service on each Node’s IP at a
static port number. A ClusterIP service, to which the
NodePort service routes, is automatically created. The
NodePort service is reachable from outside the cluster,
by requesting <NodeIP>:<NodePort>. The NodePort
service is a good option to use during the development
stage and provided that sufficient amounts of ports are
available.

• LoadBalancer: Exposes the service externally using the
cloud provider’s load balancer. NodePort and ClusterIP



services, to which the external load balancer routes, are
automatically created.

In production grade systems hosting a great number of
services, it is preferred to use an ingress controller to manage
the network traffic between the outside world and the internal
services. An ingress controller acts as the entry point for the
cluster and consolidates routing rules into a single resource as
it can expose multiple services under the same IP address.
The ingress controller is not part of the Kube-controller-
manager binary, meaning unlike many other built-in mandatory
Kubernetes controllers, it must be supplied and configured
explicitly by the user. Because Kubernetes clusters can be
situated in a wide variety of infrastructures and run-time
environments, a great number of third-party ingress controllers
are supported in it. Each implementation has its advantages
and disadvantages and must be carefully selected according to
the given requirements. Subsequently, ingress controllers are
versatile and match well with the dynamic nature of Kuber-
netes clusters, but can be demanding to configure. An ingress
resource provides a set of traffic rules defining how exposed
HTTP and HTTPS routes from outside the Kubernetes cluster
shall be mapped to services within the cluster. An ingress
can be configured to give services externally-reachable URLs,
load balance inbound network traffic, rewrite target URL and
terminate SSL/TLS connections. Every rule is formulated in a
standard pattern:

• Hostname (optional). If a host is listed the rules apply to
that host. When no host is defined the rule applies to all
inbound HTTP traffic through the IP address specified.

• List of subpaths, each with associated backend defined
with a service name, port name and port number. Host
and path must match the URL of an incoming request
before the load balancer directs traffic to the referenced
service.

• Backend is a combination of service and port names.
HTTP/HTTPS requests to the ingress that match the rule
are routed to the listed backend. The matching rules can
be formulated into complex expressions enabling very
specific network routing.

An ingress controller is responsible for executing any
ingress submitted to the Kubernetes API, usually in tandem
with a load balancer. As previously mentioned, this project
utilized a bare-metal Kubernetes cluster, thus adding the Met-
alLB load balancer was required to connect the cluster towards
the FFI edge router. When deploying the ingress controller it
will automatically be assigned an IP address by MetalLB.

For this project, Træfik7 was selected as the ingress con-
troller as it was already being used with great success by the
international partners.

F. Service and Resource Discovery APIs

The Service and Resource Discoveries APIs are developed
and shared internally in IST-168. They are needed to obtain

7Træfik (aka Traefik) is a popular feature-rich open source Edge Router
that is natively compliant with every major cluster technology [28].

Figure 6: Architecture of the Træfik ingress controller [28].

Figure 7: Detailed overview: Federated cloud architecture
showing two partner clouds (adapted from [12]).

a cooperative and coordinated federated cloud, because no
such standardized APIs currently exist. The Kubernetes cluster
running the Deployment Orchestrator queries the other Kuber-
netes clusters, it searches and maintains an overview of the
available services and resources provided in the federation.

The Resource and Service Discovery APIs respond by
returning metadata in JSON format back to the central unit.
The Resource Discovery analyses the hardware capabilities of
the cluster, e.g., CPU, GPU, RAM and storage as well as the
inbound/outbound network connectivity to other Kubernetes
clusters. Equally important is the Service Discovery in which
each cluster can report its available services. Each service is
identified with a universally unique identifier (UUID) along
with additional metadata that describe the service.

Recall the high-level architecture shown in Figure 2, where
the arrows allude to the need for standardized APIs. Following
the APIs discussed above, the more elaborate architectural
overview becomes as shown in Figure 7.

G. Deployment Orchestrator

The Deployment Orchestrator was provided by IST-168
international partners. It collects and maintains an overview
of the federated cloud. By querying the Service and Resource
Discovery APIs of each contributing cluster, it can use this
accumulated metadata to compute metrics, health checking,
orchestration of services and perform custom ranking and
optimization algorithms based on factors like computational
power, storage capacity or quality of network connectivity.



The Deployment Orchestrator is one of the key elements to
manage the interconnection of several Kubernetes clusters.

V. FUNCTIONAL SERVICES

Recall that we are basing our work on the Anglova Scenario
vignette 3: Urban operation. Specifically, the case we’re using
to show the feasibility of the federated cloud architecture, is
as follows:

Dismounted soldiers on patrol want to report a suspicious
incident. A soldier makes a photo of a car speeding away
and reports it to the HQ for further analysis. Receiving the
information, the HQ decides upon follow-up actions requiring
processing intensive image analysis: The image needs to be
enhanced, and so a Super Resolution Service (SRS) needs to
be employed to be able to discern the vehicle’s license plate.
Different nations taking part in the operation offer different
services, and so there is a need to employ the federated cloud
architecture to complete the information analysis. All partners
(for this test: NOR, DEU, NLD, USA, CAN) have deployed
the following common services:

• Resource Discovery API
• Service Discovery API
• Object Storage Service

In addition, different partners offer the following specific
capabilities in their clouds:

• NOR: Dismounted soldier system
• DEU: HQ C2-system, Deployment Orchestrator
• NLD, USA, CAN: SRS
With the aforementioned urban tactical edge scenario in

mind, applications were made for the dismounted soldiers
and the headquarters. The soldier application allows the dis-
mounted soldier to create a SPOT report containing an image
or a video, and upload it to the HQ. The HQ application is able
to view the SPOT report and invoke the SRS which enhances
the image/video sent by the soldier. The steps involved are
further shown in Figure 8.

A. Dismounted Soldier

The Dismounted Soldier application consists of a simple
frontend and a database instance. The frontend is a webpage
with file upload and data inputs which makes the SPOT

Figure 8: Scenario case: Step by step.

report. Figure 9 shows the frontend GUI. The SPOT report
generated on this webpage includes the activity, the location,
and the time and date from when the image or video was
captured. After a SPOT report has successfully been created,
it can be transferred to the Headquarters application. The
Dismounted Soldier required a database to store the image
or video files uploaded from the frontend. A MinIO database
was recommended for use by the IST-168 group, as a file
storage system was the only database needed for this project.
This database was created as a Docker image from a prebuilt
image supplied by MinIO, this database realized the object
storage service [29]. Both the MinIO storage instance and the
frontend are hosted on the Norwegian cluster.

Figure 9: The Dismounted Soldier frontend.

B. Headquarters - Frontend

Figure 10: The Headquarters frontend running on the German
cluster.

The Headquarters application, shown in Figure 10, contains
a list of SPOT reports which can be selected for a detailed
view. The HQ can invoke a SRS on any selected report image
or video. By requesting the SRS, the service discovery API
displays available instances of the SRS and their available



resources. The SRS upscales the resolution of the image as
shown in Figure 11, and adds this to the SPOT report. The
Headquarters frontend and API is hosted on the German
cluster.

Figure 11: Using SRS to increase image resolution. Original
photo (left) and enhanced version (right).

C. Implementing ingress controller and ancillary services

A fully working IST-168 cluster requires a minimum of an-
cillary services provided either by third-party entities, as well
as a number of pre-existing custom micro-services developed
and provided by the IST-168 software developers.

The software components are readily available from Docker
image registries hosted by the corresponding parties and can be
deployed onto a Kubernetes cluster by running the associated
YAML files.

Many of the YAML files typically required a great deal of
customization as each Kubernetes cluster often have its unique
properties in terms of networking and run time environment.

The MetalLB load balancer and Træfik ingress controller
are third-party software and were definitely the components
requiring the most customization, thus quite some time was
needed for trial and error.

The core of the SRS providing the artificial intelligence-
based image enhancement was implemented by IBM [30], as
shown in Figure 11, while an outer software layer was added
to offer an API compliant with the Kubernetes clusters.

VI. TESTING THE CLUSTER AND TESTING STRATEGY

Testing the cluster has been done by first testing applications
and containers on virtual machines running on personal de-
vices before deploying them at the hardware stationed at FFI.
This ensures one proper layer of testing where deployment
errors can be addressed before exposing the hardware.

Manually testing the nodes can be done by checking their
status with the following command:

$ sudo k u b e c t l g e t nodes

The results are shown in Figure 12.

Figure 12: Results of get nodes command.

Similarly, manually testing the pods can be done by check-
ing their status with the following command:

$ sudo k u b e c t l g e t pods

The results are shown in Figure 13.

Figure 13: Result of get pods command.

The first test deployed on the cluster was a simple ap-
plication which pings 8.8.8.8 and prints the feedback to the
terminal. The following command was used to run the test
scenario where “demo” represents the name of the pod and
the result in presented in Figure 14:

$ sudo k u b e c t l l o g s demo

Figure 14: The first deployment on the cluster.

A. Service Discovery and Resource Discovery

The Service and Resource Discovery cannot be tested in the
traditional sense. Instead, they are tested by calling upon the
different services and resources on the cluster.

Figures 15 and 16 show the Service Discovery and the
Resource Discovery, respectively.

Figure 15: Service Discovery in browser.

Figure 16: Resource Discovery in browser.



B. Dismounted Soldier

Figure 17 shows that the upload functionality works for both
images and videos. The test is executed by uploading an image
and a video from the Dismounted Soldier frontend shown in
Figure 9.

Figure 17: The MinIO storage server.

C. Ingress controller

It is not possible to show the ingress controller in action.
All services are routed through a single port and are assigned
different URLs by the ingress controller. Therefore, the ingress
controller is tested indirectly since the routing works for all
services.

Figure 18 gives an overview of an ingress controller.

Figure 18: Example of an ingress controller process [31].

VII. DISCUSSION

A. Technology Perspective

Cloud services are a major part of everyday life, that
come with both advantages and disadvantages. A major point
of cloud services is their availability and reliability. Cloud
services can be accessed from anywhere, at anytime. While
this benefits the average user, it makes the cloud more ex-
posed to malicious conduct. Additionally, from a single user’s
perspective, the availability of a cloud service could be less
than that of a locally run service, e.g., if the user loses the
internet connection.

All the infrastructure linked to cloud services are hosted
around the world by various different entities. This gives the
average user an easy to maintain cloud, but gives less control
of the actual hardware, and the users are at the mercy of the
providers.

The cloud is easily scalable, which means it is capable
of dealing with situations where there is a need for more
resources, as opposed to a locally run service, which would
require the purchase of additional hardware.

Kubernetes is a framework for cloud deployment, which
comes with its own advantages and disadvantages. One of
the major advantages of Kubernetes is its reliability and
scalability. Kubernetes comes built in with multiple tools for
creating, managing, and distributing nodes and containers.
It is easy to add new worker nodes and balance the load
between the nodes in the cluster. One of the disadvantages
of Kubernetes is that it can be complicated to set up. The
installation- and configuration process is fairly complex, and
it is recommended to have multiple computers for creating
a Kubernetes cluster. It is possible to install Kubernetes on
a single computer, but then naturally foregoing many of
the cloud benefits (e.g., resilience to partial failure, load
balancing). Single-computer installations are mostly used for
testing and developing services, whereas production systems
use actual clusters consisting of multiple computers.

Docker was used in this project for creating containers in the
Kubernetes cluster. It is easy to create Docker containers that
can run on any system. Docker containers can be deployed
to the Kubernetes cluster. This integration, however, can be
difficult to implement depending on what container registry the
cluster is using. Docker hub is supported out of the box, but
other container registries may require additional configuration.

Important to note, Kubernetes has announced that support
for Docker runtime will be deprecated after version 1.20 [32].
Instead, Kubernetes will deploy the Container Runtime Inter-
face (CRI) created for Kubernetes. This means, that moving
forward with Kubernetes will mean abandoning Docker in
preference of the Kubernetes CRI for development of future
services and CIS capabilities. This may or may not be a smart
move from Kubernetes. On one hand, it may lead to increased
support for their platform and their CRI. On the other hand,
since Docker is by far the most used CRI presently, this
may also lead to certain developers abandoning Kubernetes
in favor of other approaches that continue supporting Docker.
For example, Docker Swarm is such an alternative, providing
much of the same functionality as Kubernetes [33].

B. Operational Perspective

In this work, we were able to show the federated cloud
architecture, built using Kubernetes assisting with C2 in-
formation processing and distribution workflow in an urban
operation context. We saw, that with different nations offering
different capabilities, that the coordinated efforts leveraging
distributed processing were essential for this coalition opera-
tion in the Anglova Scenario’s vignette 3: Urban operation.

We can anticipate that with more complex operations,
and even more sensors providing data to the tactical edge,
these sensors likely don’t have much computing resources
(e.g., Military IoT [18]). And so, data must be processed to
generate actionable information, of which such a federated
cloud architecture, if deployed at the tactical edge, could help
enable the generation of actionable information. So what is
it that Kubernetes brings to the table, as opposed to prior
CIS deployments? Kubernetes offers horizontal and vertical
scaling of services, and so a new level of resilience to partial



network failure that we did not previously have. In the case
that different nations also offer copies of the same services,
one can also anticipate use in parallel for lower response times,
and/or selecting services based on system load and back-haul
link capacity.

And so, we can foresee several benefits to military opera-
tions, with increased availability of information to all echelons.
With new services targeting analysis and timely reports and
concise, to-the-point information products that are suited to the
resource-constrained and communication-constrained nodes,
we can expect to avoid or at least limit the potential for data
overload on the soldiers. One example, is that the improved
and more resilient computing capabilities offered by Kuber-
netes, it is possible to convert voluminous raw data into smaller
information updates at the tactical edge. This, in turn, allows
for more rapid feedback and so is also an important aspect in
maintaining information superiority in high-paced operations.

Finally, concerning future possible use of Kubernetes in
FMN, it would be of great importance that the APIs IST-
168 developed become standardized within NATO, as they are
foundational to realizing the federated cloud architecture that
the RTG proposed. Lacking such standardization, the current
state of the work is an interesting proposal and has been
demonstrated to show promise in an operational setting, but it
is not ready for operational deployment and use. At the time
of writing, the IST-168 group is working on its final report,
where the API specifications will be a major contribution of
the work. Hence, we think this report, when published, could
be of importance to potential adoption of Kubernetes in FMN
in future spirals.

VIII. CONCLUSION

A fully functional Kubernetes cluster across three physical
nodes was set up on the hardware stationed at FFI. The cluster
runs on multiple machines with a master node and two worker
nodes, with other machines available as backup. The cluster
can connect to other Kubernetes clusters, including the cloud
federation, for synchronizing services and information sharing.

Due to the nature of the technologies, most of the testing
has been manual. As Kubernetes handles orchestration and
deployment, it will fail if an error occurs. Therefore, if
deployment is successful, it is also indirectly tested.

In this work, we framed our test in context of an urban coali-
tion operation, as specified in the Anglova Scenario (vignette
3). We were able to show that the different nations partic-
ipating (NOR, DEU, NLD, USA, CAN) successfully could
interconnect and share data between their federated cloud-
deployed CIS capabilities. Hence, Kubernetes, if deployed at
the tactical edge together with a suitable set of services, could
help enable the generation of actionable information in support
of C2 in a coalition operation.

IX. FURTHER WORK

Future work from a national perspective could be to set up a
Kubernetes cluster on an ARM-based computer like the Rasp-
berry Pi. The Raspberry Pi is a low-powered computer that

can be deployed anywhere. The more energy-efficient ARM
architecture could be used for making a mobile cluster. The
K3s implementation is a lightweight version of Kubernetes that
can be used with ARM-based computers [34]. K3s can be used
to set up a mobile cloud with Kubernetes. Deploying K3s can
be automated with a shell script setting up and installing all
packages needed for the K3s cluster.

Some use cases for a mobile cluster like this could be natural
disaster relief and humanitarian aid. For example, a cluster like
this could be deployed in the aftermath of a natural disaster
where an area’s infrastructure has been destroyed. In a scenario
like this, a mobile Kubernetes cluster could be deployed to
provide services to either the victims of the disaster or to the
rescue teams trying to find survivors. An example of a service
could be a database keeping track of how many people have
been found/missing, and the locations where these people were
found. Another example could be a service keeping track of
areas the rescue teams already have searched, and areas left
to be searched.

Future work in context of IST-168 (and potentially follow-
on groups) would be addressing how state of the art cloud tech-
nologies may be used to distribute processing tasks between
mission partner clouds over low-bandwidth and unreliable
tactical networks. In this paper we have shown the feasibility
of a federated cloud architecture and distributed processing
tasks, but further investigating services for adaptive C2 in
disadvantaged tactical networks remains work to be done.
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