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Abstract—A fully adaptive radar framework has been pro-
posed in recent publications, and this paper will implement the
framework for a tracking radar. A set of cost functions are
developed to balance the performance cost of the track and the
resource cost of the track update. The method and cost functions
are illustrated in a simulated example which emulating a simple
scenario. The performance of the radar is compared when
adapting with the different cost functions, and the performance
of the track is compared together with the resources spent. It
showed an increased performance in track maintenance at less
resources spent, when comparing the method adapting over track
update interval, number of pulses in dwell and PRF, over a
method only adapting over track update interval.

I. INTRODUCTION

This paper reports on the use of the fully adaptive radar
(FAR) framework [1] to implement an adaptive update-interval
and parameter selection algorithm for a tracker. For the re-
search conducted here, only single target tracking is utilized,
however, the method could be applied to all tracks in a
multiple target tracking case providing a path to true resource
management. The method developed is validated using a
MATLAB simulator. The results demonstrate that the FAR
framework could effectively control update parameters for a
tracker.

Advances in RF hardware, analog-to-digital converter
(ADC), and computer processing technology have led to radars
that exhibit significant diversity in their parameters. Where
once the waveform duty-cycle, bandwidth and modulation
were fixed, these parameters are now commonly thought of as
configurable on a per dwell, if not per pulse, basis [2]. While it
is certainly possible to use heuristics to make such decisions,
the heuristic engine rapidly become unwieldy as the scale of
the problem to be solved increases and sub-optimal solutions
are produced [3]. Instead it is preferable to solve the problem
of parameter selection using optimization based techniques.
Optimization of parameter selection for radar became its own
area of research, commonly referred to as either fully adaptive
radar or cognitive radar [4], [5].

For the research considered here, we are concerned with
the FAR framework, proposed in [1] and experimentally
demonstrated in [6] to provide parameter optimization. While
its initial studies were completed using simulation, the FAR
framework proposed by Bell & Smith was validated exper-
imentally, first using prerecorded data [1] and then through

implementation on a dedicated hardware platform [6]. Subse-
quently, there has been significant investigation into the frame-
work demonstrating methods by which it can be extended as
well as exploring its limitations [7]–[9]. This consolidated set
of research has yielded a parameter optimization methodology
that can be applied in support of target tracking activities.

Given the close similarity between radar resource manage-
ment and FAR it is a natural progression to understand if
FAR can be utilized in the resource management problem.
The initial FAR paper [1] did consider a resource management
problem. However, the study was only in simulation and the
example was designed for demonstration rather than realism.
With the advances that have been made to the FAR framework
in subsequent research [8], it would seem reasonable to make
the parameter to be adapted the track update interval, in a man-
ner consistent with van Keuk, [10], and thus enable the start of
meaningful resource management using the FAR framework.
Other work adapting the track update interval could be found
in the MESAR program [11]. Including parameters such as
dwell time, through adjusting pulse repetition frequency (PRF)
and number of pulse, is important in a resource management
context since minimizing the dwell time will allow for more
resources to be spent on other targets. The work presented
in this paper will be a novel implementation of the FAR
framework that balances resource usage against global tracking
error. A comparison of cost functions weighing resources spent
against a global track error will be shown.

The remainder of this paper is organized as follows. Section
II presents the cost function from the cognitive radar (CR)
framework. Section III describes the simulator developed and
show some simulated results. Section IV shows simulation
result, and concluding remarks are given in section V.

II. FULLY ADAPTIVE RADAR FRAMEWORK FOR
PARAMETER SELECTION IN A TRACKING RADAR

A. Tracking model

The tracking model for a converted measurement linear
Kalman filter (LKF) from [12] is implemented using the
FAR framework. The motion model is given in Cartesian
coordinates, and the measurement uncertainties is given in the
measurement space of the radar which is the range and bear-
ing space. The measurement covariance matrix in Cartesian
coordinates is generated as proportional and rotated version
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of the matrix in measurement space. The state space used in
the Kalman filter is represented by

xk+1 = φk(Tk)xk +wk (1)
zk = Hxk + vk (2)

where φ is the transition matrix and H is a matrix se-
lecting the position variables x, y. The state variable xk =
[xk, ẋk, yk, ẏk]T . The noise variables is defined as wk ∼
N(0,Qk(Tk)), vk ∼ N(0,Rk(∆rk,∆vk)) and Tk is the
update interval. φk is the state transition matrix from the state
at time k to k+1. It usually follows normal kinematics where
distance moved from time k to k+ 1 is the velocity from the
state space times the update interval Tk. For nearly constant
velocity, velocity is regarded as the same for k + 1 as for k
plus noise. Qk is the covariance matrix of the process noise,
and hence describes the motion model for the tracker. The size
of the diagonal elements of Qk shows the probable range of
motion model parameters such as acceleration and velocity,
and the model used for Qk can be found in [12].
Rk is the covariance matrix for the measurement model,

and describes the measurement accuracy. The measurement
zk is the Cartesian position variables. The true measurement
space is non-linear with regards to the Cartesian space, since
the measurement is in range and bearing. The transition from
Carthesian to range and bearing is as follows

r =
√
x2 + y2 (3)

ψ = arctan
(y
x

)
(4)

Measurement uncertainty in the radar measurement space are
obtained from the accuracy models for radar sensors [13, pp.
402-437], and the lower bound for measurement accuracies is

σR ≥
∆R√
SNR

(5)

σψ ≥
θ3

2
√
SNR

(6)

where ∆R is the range resolution and θ3 is the 3dB beam-
width of the antenna array.

The converted measurements [14] is given as the rotated
measurement accuracies, where the cross range uncertainty is
calculated as the arc length uncertainty.

R11 = r2σ2
ψ sin2 ψ + σ2

r cos2 ψ (7)

R22 = r2σ2
ψ cos2 ψ + σ2

r sin2 ψ (8)

R12 =
(
σr − σ2

ψ

)
sinψ cosψ (9)

The measurement covariance matrix Rk can therefore be
defined as

Rk =

[
R11 R12

R12 R22

]
, r = rk, ψ = ψk (10)

B. Fully adaptive radar framework and tracker model

A general FAR framework for detection and tracking was
introduced in [1] for the development of CR applications. It
is based on the perception-action cycle defined in [15], where

Figure 1. Diagram of cognitive radar framework

there is a feed-back loop between receiver and transmitter to
allow for adaptation to the environment. The feed-back loop
is illustrated in Figure 1, where the receiver is connected to
the transmitter through a controller.

The Kalman filter recursion shown in [12] is used for motion
and information update, where the predicted covariance matrix
from the information update is equal to the predicted informa-
tion matrix (PIM) [1] for a Gaussian density. The predicted
conditional Cramér-Rao lower bound (PC-CRLB) is defined as
the inverse of the predicted conditional Bayesian information
matrix (PC-BIM), a concept defined in [1], where the PC-BIM
is equal to the sum of PIM and expected value of the Fisher
information matrix (FIM). The expected value of the FIM is
defined as

J−k (θk|Zk−1,Θk−1) = Ek {Jx(x;θk)} (11)

where θk is the optimizing parameters and Jx̄ is the FIM
which is defined as

Jx(x;θk) = −Ezk|xk;θk

{
∇x[∇x[ln f(zk|xk;θk)]]T

}
(12)

The probability density function (PDF) f(zk|xk;θk) is a
multivariate Gaussian distribution with covariance Rk. The
FIM is defined as the second partial derivative of the natural
logarithm of the PDF, and can be shown to be

Jx(x;θk) = HTRk(θk)−1H (13)

The expected FIM can be shown to be the time averaged
expectation of the FIM.

J−k (θk|zk−1,Θk−1) = Ek {Jx(x;θk)}
= Ek

{
HTRk(θk)−1H

} (14)

The PC-BIM is therefore given as

B↑k(θk|Zk−1;Θk−1) = Σk(θk)−1 + Ek
{
HTRk(θk)−1H

}
(15)

where Σk is the predicted covariance matrix calculated from
the Kalman filter. The PC-BIM has the property [1]

R↑C(θk|Zk−1;Θk−1) ≥ tr
{
B↑k(θk|Zk−1;Θk−1)−1

}
(16)

For each iteration, the radar would then solve the minimiza-
tion problem

θk = arg min
θ

[
tr
{(

Σk(θ)−1 +HTRk(θk)−1H
)−1
}

+RΘ(θ)
]

s.t.θ ∈ S
(17)
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Figure 2. Simulation setup, where a target moves with constant velocity from
the radar

where S is the set of possible parameters. This would usually
be a set containing a continuous or discrete set of values within
a lower and upper bound. The time averaging expectation
operator Ek has been removed since the covariance matrix
Rk(θk) is not a recursive function with respect to time
step k, and the argument of the minimization algorithm is
only dependent on current time step. RΘ(θ) is a function
representing the resources spent on the track update. The part
of (17) enclosed in the tr... is the performance cost, and hence
both resource and performance is optimized simultaneously.
The following section will investigate candidate resource cost
functions.

C. Candidate resource cost functions

Previous work by Christiansen and Smith [9] analyzed the
performance of the resource cost equal to A

θ , but with a
tracker operating in the range and range rate dimension. A is
a constant and θ is the track update interval. This article will
analyze the performance of this cost function, when using a
Cartesian tracker, and compare it to other candidate resource
functions. The optimizing parameter for this function is track
update interval only, and the cost function represents the
resource usage of a track update as more costly for shorter
track updates. It has an exponential growth, since the track
updates spend the same amount of resource and the amount
of available track updates greatly decreases when the track
update interval is short. The resource cost function is given in
(18), where θ1 is the track update interval.

RΘ(θ) =
A

θ1
(18)

Next we consider a candidate resource function that accounts
for the resources spent with the track update interval and
includes the resources spent for the specific track update. A
measure for resources spent could be the dwell time and it is
represented as the number of pulses used in the dwell divided
by the PRF. The second candidate function could therefore be
a weighted sum of the resources spent with a specific track
update interval and the dwell time. Equation (19) shows the
resource cost function, where B is a constant, θ2 is the number
of pulses, θ3 is the PRF and θ = [θ1, θ2, θ3]T is the parameter
vector.

RΘ(θ) =
A

θ1
+B

θ2

θ3
(19)

III. FULLY ADAPTIVE RADAR SIMULATOR

A simulator has been implemented in Matlab to test appli-
cations using the FAR framework. The simulation parameters

Figure 3. True position in blue dots, detections in black diamond and track
in green square. (a) Radar range, (b) radar azimuth, (c) SNR

were selected to resemble the experimental radar system built
at Norwegian Defense Research Establishment (FFI) [16]
to test CR applications. The simulator has been used to
develop and test CR algorithms prior to experiments on the
experimental system. Both simulation parameters and a more
detailed description of the simulator can be found in [9].

IV. SIMULATION RESULTS

This section will present results of simulations, using the
tracker defined in section II-A and solving the optimization
problem defined in section II-B, (17). Two candidate resource
cost functions will be compared, given in (18) and (19).
The simulated target has a simple movement with linearly
increasing range and constant velocity which is shown in
Figure 2. It moves northward in respect to the radar, as shown
in Figure 2, and hence the azimuth angle is zero and it is
moving along the y axis in local Cartesian coordinates. This
is shown in Figures 6 (a) and 3 (a) which shows the target
range for the simulations. Figures 6 (b) and 3 (b) shows the
target azimuth, which is close to zero for the full simulations,
as expected for a target moving northwards, and Figures 6
(c) and 3 (c) shows the signal to noise ratio (SNR) which
decreases as the targets moves with increasing range.

Simulation parameter Static value case Bounds

Peak power 10 Watts <10 Watts
PRF 10kHz < 100 kHz
CPI 51ms < 1 second
Track update rate < 8 Hz
Bandwidth 50MHz 160MHz
Angular accuracy > 4◦ (SNR dependent)
Beam width 30◦

Center frequency 3.1GHz 3.0 - 3.3GHz
Table I

KEY PARAMETERS FOR SIMULATOR OF COGNITIVE RADAR SYSTEM
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Figure 4. Radar parameters; (a) track update interval, (b) PRF, (c) number
of pulses for dwell

Figure 5. Tracker standard deviation; (a) prior x std, (b) prior y std, (c)
measurement Rk for x std, (d) measurement Rk for y std

A. Track update interval-only resource cost function analysis

When using the resource cost function given in (18) to
solve the optimization problem given in (17), the optimizer
will balance between the predicted global track error from
the trace of the PC-BIM and the track update interval. The
predicted posterior covariance from the motion model of the
tracker will be large for large track update intervals, since the
uncertainty of where the target is will increase when the revisit
time increases. The measurement uncertainty is dependent on
the resolution in range and angle, combined with the SNR as
shown in equations (5) and (6), and hence is not dependent on
the optimizing parameter which is the track update interval.

Figure 4 shows how the radar parameters change over the
simulation. (a), which show the track update interval, is the
only relevant parameter since it is the only changing parameter
from the resource cost function. When the target is close
to the radar, the update interval is equal to the maximum

Figure 6. True position in blue dots, detections in black diamond and track
in green square. (a) Radar range, (b) radar azimuth, (c) SNR

allowed value of 4s. When the target moves away from the
radar it decreases, because the cost function balances the state
uncertainty dependent on the track update interval against the
measurement uncertainty which is dependent on the SNR and
range. The track is eventually lost after the track update has
been the minimum allowed for a period of time, and this is
due to low SNR which cause lost detections.

Figure 5 shows the track covariance in sub-figures (a) and
(b) for x and y coordinates. The covariance is constant, after
a short period of stabilizing, and this is due to the constant
track update interval in the beginning. When the track update
interval decreases, the covariance decreases as well, and this
is mainly due to that the uncertainty of the target position due
to the movement model from the tracker being dependent on
the track update interval solely. The global covariance from
the PC-BIM is dependent on both the track covariance and
the measurement covariance, and hence it balances the two,
against the cost of the track update. This means that when
the measurement uncertainty increases, shown in (c) and (d)
in figure 5, it has to compensate for this with decreasing the
tracker error. This can be achieved with lowering the track
update interval. One obvious observation is that the covariance
in (c) is much larger than (d), and this is due to that the target
moves straight along the antenna bore-sight, along y-axis,
and the uncertainty is much larger in the angle measurement
than in the range measurement for this system. (c) shows x
uncertainty, and hence it shows the cross-range uncertainty
which is approximately proportional to the angular uncertainty.

B. Track update interval and dwell time resource cost function
analysis

When incorporating the dwell time into the optimization,
two extra radar parameters is adjusted. The dwell time is
the number of pulses divided by the PRF, and hence both
parameters are included in the analysis. Figure 7 shows the
radar parameters, and now we can see that all three parameters
are adjusted during the simulation. The track now lasts for
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Figure 7. Radar parameters; (a) track update interval, (b) PRF, (c) number
of pulses for dwell

Figure 8. Tracker standard deviation; (a) prior x std, (b) prior y std, (c)
measurement Rk for x std, (d) measurement Rk for y std

longer at the maximum allowed value of 4s (Figure 7, (a)), the
PRF jumps to the maximum allowed value of 100kHz (Figure
7, (b)) and the number of pulses per Coherent Processing
Interval (CPI) increases from 500 to 2000 (Figure 7, (c))
during the first part of the simulation. Increasing the number
of pulses increases the SNR, and increasing the PRF decreases
the dwell time with the same number of pulses. Figure 8 (a)
and (b) shows the track covariance, and it is connected to the
track update interval as in the example in the previous section.
The measurement covariance, shown in Figure 8 (c) and (d),
decreases more slowly than in the previous example, and this
is due to the increased number of pulses. Even though more
pulses are utilized, the dwell time is actually smaller than
in the previous example since the starting PRF is 10kHz, a
tenth of the adjusted PRF in this example. We could of course
select such a PRF for the previous example, but the purpose
here is to show that having adjustable parameters selected

from an optimization makes the system more adaptable. In
this example, the track is maintained longer at the expense of
less resources, if we look at track update interval and dwell
time. The second example utilizes more pulses per CPI, but
it does not necessary require a higher resource cost since the
CPI per dwell is smaller due to the high PRF.

The track is maintained until approximately 1000 meters
(Figur 6 (a)), where the track in the previous example is
maintained until approximately 700 meters (Figure 3 (a)).
This is more than 40% increase in range. From Figure 7 (a),
the track update interval starts decrease from it’s maximum
allowed value of 4 seconds after almost 70 seconds, and the
track update interval in the previous example starts decreasing
after 30 seconds (Figure 4 (a)). This is more than a doubling
of the time, and hence range since it has a constant velocity,
where it can operate at a large update interval. This has the
potential to save time and resources for a tracking radar.

V. CONCLUDING REMARKS

This work has shown the an application for the FAR
framework of parameter optimization in a Cartesian tracking
radar. There is a comparison of two cost functions, where one
only optimizes the resources used by track update interval,
and the second method optimizes track update interval and
dwell time represented by the number of pulses and the PRF.
A performance increase has been showed for the cost function
optimizing over both track update interval and dwell time, and
it shows that we can sustain a track longer with less resources
spent than the case of only track update interval. The track is
maintained for 40% longer range and the tracker can operate
at the maximum allowed track update interval at more than
double range compared to the first cost function. This has the
potential to save time and resources for a tracking radar.
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