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Abstract
In order to predict the impact sensitivity of high explosives, we designed and evaluated several models based on the trigger
linkage hypothesis and the Arrhenius equation. To this effect, we calculated the heat of detonation, temperature of detonation,
and bond dissociation energy for 70 energetic molecules. The bond dissociation energy divided by the temperature of
detonation proved to be a good predictor of the impact sensitivity of nitroaromatics, with a coefficient of determination
(R2) of 0.81. A separate Bayesian analysis gave similar results, taking model complexity into account. For nitramines, there
was no relationship between the impact sensitivity and the bond dissociation energy. None of the models studied gave good
predictions for the impact sensitivity of liquid nitrate esters. For solid nitrate esters, the bond dissociation energy divided
by the temperature of detonation showed promising results (R2 = 0.85), but since this regression was based on only a few
data points, it was discredited when model complexity was accounted for by our Bayesian analysis. Since the temperature of
detonation correlated with the impact sensitivity for nitroaromatics, nitramines, and nitrate esters, we consider it to be one
of the leading predictive factors of impact sensitivity for energetic materials.
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Introduction

By using quantum chemical and thermodynamic calcula-
tions, new energetic molecules can be designed and charac-
terized in terms of their geometry, density, and performance
as explosives and propellants [1–5]. It is important to predict
the sensitivity of energetic materials, but despite consid-
erable efforts made during the last decades, developing a
reliable and general method is still challenging [6–11]. By
the sensitivity of an energetic material, we refer to its sus-
ceptibility to initiate due to external thermal, mechanical, or
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electrostatic stimuli. The study of the underlying causes that
govern sensitivity is not only important for understanding
liquid and solid-state phenomena in general but above all for
ensuring safe handling, transport, and storage of energetic
materials.

One of the most well-known measures of the sensitivity
of an explosive is its impact sensitivity, which is determined
by dropping a mass upon the sample, measuring the critical
point at which a pre-decided fixed percentage of the drops
will lead to an explosion. We refer to this critical point as
the critical impact level of the material, which may either
be given as the critical height (cm) or potential energy (J).
Hence, the impact sensitivity and the critical impact level
are inversely correlated.

The impact sensitivity is related to macroscopic param-
eters such as particle size, crystals defects, polymorphism,
and crystal orientation. Defects play a particularly promi-
nent role since they form hot-spots under fast compression
of the material. The initiation process can be divided into
two steps. First, the material is compressed and deformed,
leading to heating of the hot-spots. In the second step, the
material inside and surrounding the hot-spots self-ignites
and propagates into an explosion, provided that the hot-spot
temperatures are sufficiently high. The critical temperature
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at which the explosive self-ignites during impact has been
measured to be between 390 and 1060◦ C [12, 13].

There are many operational factors which also affect
the critical impact level measured, such as the type of
fallhammer used, the test procedure itself, and operator-
related judgment of explosion/no-explosion. In addition, the
impact sensitivity will depend on the thickness and size
of the sample [14, 15]. In general, the measured critical
impact level depends on a variety of experimental factors
in addition to molecular-related properties. Consequently,
predicting impact sensitivities with reasonable accuracy
appears to be too subtle a problem to be explained by a
model based on fallhammer measurements alone.

Additional key factors responsible for the sensitivity
of an energetic material include the molecular properties
related to the kinetics and the thermodynamics of the
decomposition reactions. Numerous studies have been
carried out in order to correlate the impact sensitivity
with properties like heat of detonation [16–18], detonation
velocity [19], bond dissociation energy [22, 23], oxygen
balance [24], electrostatic potential of the molecular surface
[25–27], band gap [28], 15N NMR chemical shift [29],
“doorway modes” in the region 200–1000 cm−1 [30], and
free space in the crystal lattice [31]. More recent studies
focusing on physical factors report that there are only weak
correlations or trends between the impact sensitivity and
heat of detonation, electrostatic potential, and free space in
the crystal lattice [7, 8, 17].

Due to the complexity of initiation of the decompo-
sition pointed out by Dlott, care must be taken before
drawing mechanistic conclusions based on simple corre-
lation studies [32]. Moreover, if a study is based on too
few compounds to make conclusive judgments, we risk
asserting accidental correlations [33]. Using a large set of
molecules, Keshavarz et al. derived models based on the
CHNO ratios and different molecular moieties [34, 35].
Quantitative structure-property relationship (QSPR) mod-
els have also been developed for large sets of molecules
[36, 37], and seem to be able to predict the impact sen-
sitivity with reasonable accuracy. However, unlike models
based on physical factors, these QSPR models do not reveal
much information about the intrinsic factors that govern the
impact sensitivity. Since they generally contain a surfeit of
adjustable parameters, they are also prone to over-fitting.

Models for predicting the impact sensitivity based on
the Arrhenius equations and the thermodynamics of the
decomposition were introduced in the 1940s and 1950s [12].
In a study of 15 molecules, Wu et al. showed that the ratio
between the dissociation energy of the weakest –NO2 bond
and the heat of decomposition correlated with the impact
sensitivity [1, 44]. This approach was refined by Mathieu et
al., investigating models based on larger sets of molecules
[38–40]. For various families of energetic materials, they

found correlations between the impact sensitivity and the
bond dissociation energy divided by the decomposition
energy. In these models, the enthalpies of formation were
either neglected or calculated with a simplified method, and
the decomposition energies were computed assuming that
the energetic molecule decomposed to H2O–CO2 arbitrarily
[38–40]. Instead of calculating the bond dissociation
energies for each molecule separately, the –NO2 bond
dissociation energy was assigned to a constant value by
considering into which family of energetic materials the
molecule belonged, along with the functional groups in the
neighboring position of the nitro group [38–40].

In this work, we report density functional theory (DFT)
calculations of the –NO2 bond dissociation energies and
thermodynamic calculations of the heat and temperature
of detonation for 70 energetic molecules. We then apply
our results to investigate how these properties can predict
impact sensitivity. All –NO2 bond dissociation energies
in the molecules are calculated separately. When overlap
between the data sets is accounted for, we reach a total
of 91 data points on which our regression models are
based. Impact sensitivity models based on bond dissociation
energies, heats of detonation, detonation temperatures, and
total energies are evaluated for these molecules. 1,3,5-
Triamino-2,4,6-trinitrobenzene (TATB) is known for its low
sensitivity, and has been frequently used in models for
predicting impact sensitivities [18, 19, 34, 37, 38]. However,
its critical impact level (490 cm; 2.5 kg drop weight) is not
a measured value but an estimate based on extrapolating
the measured critical heights and oxygen balances of only
three energetic molecules. The measured critical height of
TATB is only reported to be higher than 320 cm [41]. We
will therefore use our most promising model to make a more
accurate prediction of this value.

Theory andmethods

Modeling the critical impact level

We model the critical impact level of an energetic mole-
cule as a continuous random variable I with the property
that its (natural) logarithm log I is governed by a normal
distribution with mean μ and variance σ 2, so that

log I ∼ N
(
μ, σ 2

)
. (1)

In general, μ will depend on the individual choice of
molecule, whereas σ 2 is assumed to be constant across
families of molecules. The variance will depend on the
level of statistical noise in the data set under consideration,
which is largely due to experimental inaccuracies. However,
when modeling quantum mechanical phenomena, genuine
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randomness in nature may also have an effect on the
measurements. The Bruceton method and UN test procedure
are among the most common schemes for measuring critical
impact levels. The former gives the impact energy level
I50 (J) or height H50 (cm) at which 50% of the test samples
are expected to explode, whereas the latter gives the impact
energy level I1:6 (J) or height H1:6 (cm) that results in an
explosion for at least one in six test drops [42, 43]. For
dimension reasons, we introduce a reference value I 0 of
1 J. We let the critical impact level I denote either I50/I

0

or I1:6/I 0, depending on whether the data set upon which
the regression is based is in accordance with the Bruceton
method or the UN test procedure.

We now motivate our choice of models. According to the
hot-spot theory, when an energetic material is subjected to
a mechanical impact, material deformation will increase the
hot-spot temperatures. If this temperature is above a critical
level, the molecule will decompose. The trigger linkage
hypothesis states that the first step in the initiation of an
energetic molecule is a bond cleavage. The decomposition
is triggered by the homolytic fission of an A–NO2 bond, and
so the reaction is given by

A–NO2 → (A–NO2)
� → A · + · NO2, (2)

where the star � denotes the transition state and A is either
C, N, or O.

At high temperatures, similar to what the material is
exposed to by impact or shock, the C–NO2 bond disso-
ciation is the dominant reaction in the initial decomposi-
tion phase for nitroaromatic molecules [33]. However, at
lower temperatures, reactions involving the other functional
groups on the aromatic ring may occur. Furthermore, auto-
catalyzed reactions and self-heating of the material because
of exothermal reactions determine the rate of reaction r in
the next decomposition phase. The kinetic theory attributed
to Arrhenius dictates that r is inversely exponentially depen-
dent on the activation energy Ea (the energy required to
transform the reactant into the transition state), giving us

−d [A–NO2]

dt
= r = c [A–NO2]n exp

(
− Ea

RT

)
, (3)

where [A–NO2] is the molar concentration of A–NO2, t

is time, c is a constant (the pre-exponential factor), n is
the reaction order, R is the molar gas constant, and T

is the absolute temperature. Since it has been assumed
that the rate of reaction given by the Arrhenius equation
correlates negatively with the impact sensitivity of an
energetic material [1, 12, 38, 44], we make the assumption
that these quantities are inversely proportional. That is, the

sum μ + log r is constant. Combining this with taking
logarithms on both sides of Eq. 3, we get that

−μ = c + n log [A–NO2] − Ea

RT
. (4)

When [A–NO2] and n are assumed to be constant, Eq. 4
takes the form

μ = c1 + Ea

RT
, (5)

where c1 is a constant.
Equation 5 forms the basis for our models. In order to

calculate μ, we first need to calculate Ea and T . Unfor-
tunately, these parameters are difficult to determine. Even
though Ea can be calculated by quantum mechanical meth-
ods, several transition states and different decomposition
routes need to be considered, making the calculations very
time-consuming. For this reason, we have evaluated vari-
ous approximation schemes for Ea and T . In our first three
models, we assume that the activation energy in Eq. 5 is
constant.

The Arrhenius law requires a particular temperature.
During the complex sequence of events leading to an explo-
sion, the temperature in the surroundings of a decomposed
molecule will deviate from the ambient temperature. A
small number of neighboring molecules are envisioned
to decompose and release energy, increasing the local
temperature. If the decomposition reaction produces more
heat than is lost in conjunction with the heating of the
nearby species, heat convection, and conduction to the
surroundings, the temperature will rise rapidly. If this
occurs, the reaction may propagate into an explosion.
Therefore, T is a local temperature, varying in space and
time during these events. In this picture, the more energy
released during decomposition, the higher the local temper-
ature. Consequently, the heat of detonation Q (kJ dm−3)
is assumed to be proportional to T . This gives our first
model, which was studied in References [1, 7, 8, 16–18, 44],
namely

μ = c1 + c2

Q
. (6)

Here, the constants c1, c2 are fitted to critical impact level
data by linear regression and Q is calculated in EXPLO5
[45], which uses the chemical formula, the enthalpy
of formation, and density to calculate the detonation
properties. The enthalpies of formation and densities are
taken from References [46–49]. These references do not
contain enthalpy of formation or density for all the energetic
materials we shall consider, so for the remaining molecules,
these parameters are estimated using the method described
in References [50–54].

Song et al. assumed that the total energy Etotal (Hartree)
of an energetic molecule correlates with the energy release
of the decomposition reaction [20, 21]. This motivates the

J Mol Model (2020) 26: 65 Page 3 of 14 65



assumption that Etotal and T are proportional, giving us the
model

μ = c1 + c2

Etotal
, (7)

where Etotal is calculated by Gaussian09 [55]. The zero-
point energy is not included in this calculation.

A new model, to our knowledge not discussed in
the literature, results from assuming that T in Eq. 5 is
proportional to the detonation temperature Tex (K) of the
material, leading us to

μ = c1 + c2

Tex
, (8)

where Tex is calculated in EXPLO5.
The models above require a constant Ea for the

homolytic cleavage of the A–NO2 bond for each class of
energetic material. This is clearly a rough approximation. It
has been proposed that Ea is proportional to the bond disso-
ciation energy BDE (kJ mol−1), that is, the energy required
to break the trigger-linkage [1, 38–40, 44]. However, a pro-
portional relationship between BDE and Ea is likely to
hold only for compounds where the resonance stabiliza-
tion and the structure of the transition states are relatively
similar. Khrapkovskii et al. reported a significant correla-
tion between the measured value of Ea for the C–NO2

homolysis in nitroaromatic substances with different sub-
stituents and the values of BDE calculated by the hybrid
DFT functional B3LYP and a small basis set 6-31G(d,p),
with a coefficient of determination R2 of 0.72 [56]. This
motivates the assumption that Ea and BDE are proportional.

Our fourth model in question was studied in References
[22, 23]. It is based on BDE alone, and reads

μ = c1 + c2 (BDE) , (9)

where we have assumed that T in Eq. 5 is constant. By
including BDE and the approximations used in Eqs. 6, 7,
and 8 for the local temperature into Eq. 5, we arrive at our
final three models of consideration, which take the form

μ = c1 + c2

(
BDE

Q

)
, (10)

μ = c1 + c2

(
BDE

Etotal

)
, (11)

μ = c1 + c2

(
BDE

Tex

)
. (12)

Equations 10 and 11 were studied in References [1, 19,
38–40, 44] and [20, 21], respectively.

We study three families of energetic molecules: nitroaro-
matics, nitramines, and nitrate esters. For each family, we
make a choice of which bond rupture we believe to be
the key step in the initiation process. We choose C–NO2,

N–NO2, and O–NO2 for nitroaromatics, nitramines, and
nitrate esters, respectively.

Density functional theory calculations

Our original intention was to optimize the geometry of
molecules and radicals with the M06 functional and the
6-311+G(2d,p) basis set, since M06 is reported to calculate
homolytic dissociation of C–NO2 bonds accurately [57].
However, we were not able to calculate several hundred val-
ues of BDE with this choice of functional and basis set
due to limited computer power. In order to avoid this dif-
ficulty, we instead chose the B3LYP functional, which is
widely used in optimizing the geometry of energetic mate-
rials. This functional is known to systematically undershoot
the value of BDE for C–NO2 [57], but Khrapkovskii et al.
have shown that with a small basis set (6-31G(d,p)),
it calculates BDE for substituted nitroaromatics with simi-
lar accuracy as wB97xd/6-31+G(2df,p), G2, G3, G3B3 and
CBS-QB3 [56]. In Table 1, we show how the calculated
value of the C–NO2 BDE for nitrobenzene converges by
increasing the size of the basis set. This value has been
measured to be 298.7 kJ mol−1 [58] and 314.5 kJ mol−1

[59].
The BDE values in Table 1 are calculated according to

the method in Reference [60]. Table 1 also illustrates how
the B3LYP functional undershoots the BDE values, but it
should be borne in mind that in our models, differences in
BDE are more important than the particular values they take.
The calculation is defined by

BDE = E (A·) + E (NO2·) − E (A–NO2) , (13)

where E (A·), E (NO2·), and E (A–NO2) denote the ground
state electronic energies (open shell model) of the species
A·, NO2· and A–NO2, respectively. In Eq. 13, the zero-point
energy is neglected since Song et al. have shown that it
bears no important role for the correlation between I50 and
BDE/Etotal [20].

Table 1 The C–NO2 bond dissociation energy BDE (kJ mol−1) for
nitrobenzene calculated with the B3LYP and M06 functional at 298 K
by using different basis sets

Basis set B3LYP M06

6-31G 301.3 329.9

6-31G(d) 290.1 312.6

6-31G(d,p) 290.2 312.6

6-311G(d,p) 278.7 299.7

6-31+G(d,p) 282.6 305.4

6-311+G(d,p) 276.3 297.5

6-311+G(2df,2p) 277.3 299.6
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Experimental measurements

Since variation in the measurements of critical impact
level causes difficulties in parametrizing and validating
models, it is important to keep observational uncertainties
to a minimum when conducting experiments. The critical
impact level data for the nitroaromatic materials is obtained
from the Wilson et al. data set, where the tests were
performed in the same laboratory with the same equipment
and according to the same test procedure [48]. Wilson
et al. also ensured that the molecules considered had a
similar particle distribution, and so we find this data set
to be the most useful one for our purposes. It should
be noted that the critical height of 1,3-diamino-2,4,6-
trinitrobenzene (DATB) and TATB are only given as a
lower limit below which they did not explode, namely
H50 > 200 cm for both molecules. Therefore, these values
are not included in the training set from Wilson et al.
In our analysis, we also consider two other data sets for
nitroaromatics in order to reduce the risk of asserting any
accidental correlations. These are taken from Storm et al.
[41] and Meyer et al. [47]. The critical impact levels for
the nitramines and nitrate esters are obtained from Storm
et al. and Meyer et al., respectively. For the Wilson et al.
and Storm et al. data sets, the Bruceton procedure was
used, while the Meyer et al. data set is based on the
UN test procedure. Hence, there are systematic differences
between the measured critical impact levels in these data
sets, which emphasizes that we cannot easily combine them
in order to parametrize and validate the models collectively
[8].

Statistical analysis

In order to evaluate the predictive ability of our models,
we calculate the coefficient of determination (R2), root-
mean-square error (RMSE), absolute mean, and maximum
deviation between our predictions and the measurements
from our data sets. The most promising model is also
developed in parallel via Bayesian regression, taking
model complexity into account. We evaluate the predictive
power of this Bayesian model via the model evidence
function. In addition, we also perform a simple sensitivity
analysis in order to evaluate the consequences of inaccurate
calculations or measurements.

In the frequentist framework, the mean μ and variance σ 2

in the distribution (1) are estimated using the sample mean
and correctly scaled sample variance, respectively, which
are unbiased. We also note that our assumption (1) may be
rephrased as

I ∼ Lognormal
(
μ, σ 2

)
, (14)

and so in the frequentist framework, we may predict the
mean and variance of a new critical impact level Inew as

E [Inew] = exp

(
μ + σ 2

2

)
, (15)

var(Inew) =
[
exp

(
σ 2

)
− 1

]
exp

(
2μ + σ 2

)
. (16)

In the Bayesian framework, we introduce a conjugate
prior distribution for the model coefficients and estimate the
variance by maximizing the evidence function. Then any
new critical impact level Inew|D given observed data D
will be governed by the predictive distribution, which will
also be lognormal due to the functional form of the prior
distribution. That is,

Inew|D ∼ Lognormal
(
μD, σ 2

D
)

, (17)

where μD and σ 2
D are the mean and variance of the

predictive distribution, respectively. Recall that unlike
in the frequentist framework, σ 2

D will depend on the
individual choice of molecule considered. The expectation
and variance of the new critical impact level Inew|D may
then be calculated as

E [Inew|D] = exp

(
μD + σ 2

D
2

)
, (18)

var (Inew|D) =
[
exp

(
σ 2
D

)
− 1

]
exp

(
2μD + σ 2

D
)

. (19)

Later, we predict the critical impact level for DATB and
TATB, both in the frequentist and Bayesian framework.

Results and discussion

The molecular structure of these energetic materials
together with the computed data are available in the
Electronic Supplementary Material.

Nitroaromatics

We perform the linear regression for nitroaromatic materials
in two separate ways, both in a frequentist framework
and via Bayesian regression. In the former framework,
the model coefficients are determined by minimizing a
non-regularized sum-of-squares error function, and the
predictive ability of the model is evaluated via cross-
validation. Note that with this approach, the issue of model
complexity is not addressed. However, when performing
regression with relatively few data points, the issue of
model complexity becomes a key point for avoiding over-
fitting. In the Bayesian framework, analysis of model
complexity is built in by design, which leads us to somewhat
different conclusions than those relying on the frequentist
approach, in particular for the Storm et al. data set. In the
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Table 2 The coefficient of determination between the log critical impact level and the reciprocal of the heat of detonation, the reciprocal of the
total energy, the reciprocal of the temperature of detonation, the bond dissociation energy, the bond dissociation energy divided by the total energy,
the bond dissociation energy divided by the heat of detonation, and the bond dissociation divided by the temperature of detonation. The regression
is based on the Wilson et al., Storm et al., and Meyer et al. data sets, respectively

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

Wilson et al. 0.20 0.24 0.41 0.56 0.48 0.76 0.81

Storm et al. 0.41 0.26 0.54 0.56 0.42 0.64 0.67

Meyer et al. 0.64 0.21 0.75 0.41 0.40 0.70 0.69

Bayesian framework, the predictive quality of the model
is addressed by evaluating the model evidence rather than
cross-validation.

Frequentist framework

The results for the nitroaromatic materials based on the
Wilson et al., Storm et al., and Meyer et al. data sets are
shown in Table 2.

We note that 1/Tex correlates better with log I than
1/Q for all three data sets. The most promising predictor
of critical impact levels overall is BDE/Tex, with R2 =
0.81, 0.67, and 0.69. Figure 1 illustrates the merit of this
model for the Wilson et al. data set.

Table 2 shows only a weak correlation between
BDE/Etotal and log I . These results are not in line with
those of Song et al., which indicate merit for this model [20,
21]. However, they derived this correlation by using a small
data set. For molecules of similar structure, Etotal is likely
to correlate with Q, but this is unlikely to hold in general;
we get virtually no correlation (R2 = 0.03) when plotting
these parameters against each other.

As there are only 24, 17, and 16 molecules in the
Wilson et al., Storm et al., and Meyer et al. data sets,
respectively, our regression is a priori prone to over-fitting.
In order to evaluate its predictive ability, we use leave-one-
out cross-validation; the results of which are summarized in
Table 3.

Fig. 1 The log critical impact level of the nitroaromatics in the Wilson et al. data set plotted against the bond dissociation energy divided by the
detonation temperature, along with the best-fitting regression line (R2 = 0.81)
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Table 3 Leave-one-out cross-validation of the model based on the bond dissociation energy divided by the temperature of detonation. The RMSE,
absolute average deviation, maximum deviation, and the compounds with largest deviation are given. See the “Statistical analysis” section for how
the predicted critical impact level is calculated from the model

Average abs. Maximum Maximum

Data set RMSE (J) deviation (J) deviation (J) deviation compound

Wilson et al. 6.1 3.7 25 CL-14

Storm et al. 15 10 40 Styphnic acid

Meyer et al. 9.1 6.6 21 Picramic acid

Our cross-validation does not show any particularly
convincing results for either data set, revealing that more
parameters than just BDE/Tex are needed to predict the
critical impact level of nitroaromatic compounds. The most
promising numbers are for the Wilson et al. data set, with
an RMSE of 6.1 J and an average absolute deviation of
3.7 J between the predicted and measured I50. 5,7-Diamino-
4,6-dinitrobenzofuroxan (CL-14) has the largest deviation
(25 J). The (Wilson et al.) model predicts the critical impact
level I50 of CL-14 to be 48 J, while the measured I50 is
29 J. We note that the calculated C–NO2 BDE in CL-14 is
quite large, at 318 kJ mol−1. However, this NO2 group is
surrounded by an amino group on each of the neighboring
carbons, as is also the case for TATB. Hence, this value for
CL-14 is not particularly surprising, as the BDE of TATB is
calculated to be 310 kJ mol−1. The deviation between the
measured and predicted critical impact level of CL-14 may
indicate that this molecule follows another decomposition
route.

CL-14 contains a furoxan ring, as is also the case
for three other molecules in the Wilson et al. data set,
namely 7-amino-4,6-dinitrobenzofuroxan (ADNBF),
4,6-dinitrobenzofuroxan (DNBF), and 8-amino-7-
nitrobenzobisfuroxan (CL-18). These have deviations of
-3 J, -8 J, and 2 J (respectively) between the predicted
and measured I50. If the decomposition is initiated in the
furoxan ring, a larger deviation may be expected.

From Table 3, we see that in the Storm et al. data set,
1,3-dihydroxy-2,4,6-trinitrobenzene (styphnic acid) has the
largest deviation between the predicted and measured I50.
Our model predicts this value to be 45 J, while it is measured
to be 11 J. The BDE is calculated to be 287 kJ mol−1

by using the M06 functional and the 6-311G+(2d,p) basis

set. This is similar to the value calculated when using
B3LYP/6-31G(d), which is 274 kJ mol−1.

Bayesian regression

We now perform Bayesian linear regression separately
on the three data sets for the most promising model,
namely (12). In order to adapt the Bayesian framework,
we introduce a zero-mean, isotropic bivariate normal prior
distribution over the model coefficients c = (c1, c2)

T with
covariance matrix τ 2I , so that

c ∼ N
(
0, τ 2I

)
. (20)

We follow the process outlined in Reference [61], in
which the first step is to maximize the evidence function in
order to obtain estimates for the parameters σ 2 and τ 2, a
technique also known as emperical Bayes. We then compute
the posterior distributions for the model coefficients by
updating our prior distributions separately over the the
data sets. Using the mean of this posterior distribution
as our estimate for the model coefficients c, we obtain
our linear models. Note that this process is equivalent
to minimizing a regularized sum-of-squares error function
with regularization term λ = σ 2/τ 2, and so model
complexity is intrinsically accounted for. A summary of
the model coefficients computed, along with the relevant
parameters, is provided in Table 4.

We see that the penalizing regularization term plays a
substantial role for the regression on the Storm et al. data set.
Although values of R2 in the frequentist analysis for Storm
et al. and Meyer et al. were relatively close in value (0.67

Table 4 Bayesian regression for the three nitroaromatic data sets, based on Eq. 12, with a prior distribution given by Eq. 20. The variances σ 2 and
τ 2, the regularization coefficient λ = σ 2/τ 2 and the effective number of parameters γ = cT c/τ 2 are also included

Data set c1 c2 σ 2 τ 2 λ = σ 2/τ 2 γ = cT c/τ 2

Wilson et al. − 1.31 59.92 0.11 1.7 × 103 6.2 × 10−5 1.98

Storm et al. 2.80 2.18 0.82 12 6.7 × 10−3 1.03

Meyer et al. − 0.81 44.40 0.23 1.0 × 103 2.2 × 10−4 1.93
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Table 5 Evaluation of the (log) model evidence for the proposed linear model (12), along with the (log) model evidence for an alternative constant
model (21). The Bayes factor and its preference are also listed for the three data sets

Linear hypothesis Constant hypothesis Bayes factor Preferred

Data set model evidence (log) model evidence (log) (linear against constant) model

Wilson et al. − 14.46 − 26.13 1.2 × 105 Linear

Storm et al. − 23.40 − 21.12 0.10 Constant

Meyer et al. − 17.78 − 18.96 3.25 Linear

and 0.69, respectively), the Bayesian analysis suggests that
there is little evidence supporting a linear term in the model
for the Storm et al. data set. Considering the interpretation
of the parameter γ = cT c/τ 2 provided in Reference
[62], namely as the effective number of parameters for
the model, we see that for the Storm et al. data set, there
is effectively only a single parameter (the constant term)
governing the distribution of data points. This is in contrast
to the corresponding results for the Wilson et al. and Meyer
et al. data sets, where the effective number of parameters
is calculated to be approximately equal to 2, supporting the
claim that log I indeed depends linearly on BDE/Tex.

We evaluate the predictive ability of our models in
the Bayesian framework by calculating the (log) model
evidence function. Since the Bayesian regression penalizes
the model complexity for the Storm et al. data set, we
also compare the evidence for our proposed model to that
of a separate constant model which asserts no correlation
between log I and BDE/Tex. That is, our other model
claims that I is governed by a lognormal distribution of the
form

I ∼ Lognormal
(
μ0, σ

2
0

)
(21)

with constant mean μ0 and constant variance σ 2
0 . We

perform the corresponding Bayesian regression for this
alternative model and compare the results to our original
model (12) by calculating the Bayes factor. The results of
this model comparison are presented in Table 5. A Bayesian
factor larger than unity indicates preference towards the
linear model, while a factor smaller than unity indicates
preference towards the constant model.

From Table 5, we see that Bayesian regression on the
Wilson et al. and Meyer et al. data sets prefers the linear

model (12), whereas it prefers the constant model (21) for
the Storm et al. data set. Hence, our prediction of the critical
impact level of TATB will be based on the Wilson et al.
data set rather than that of Storm et al. Note that the model
comparison for the Wilson et al. data set is several orders of
magnitude more decisive than for that of Meyer et al.

We make two predictions of the critical impact level I50

of DATB and TATB, one based on the frequentist framework
and another from the Bayesian predictive distribution. The
predictions and their uncertainties are calculated using
Eqs. 15 and 16. The results are given in Table 6.

Storm et al. measured the critical impact level (H50, 2.5 kg
drop weight) of TATB to be larger than 320 cm (I50 > 78 J).
Additionally, they predicted H50 to be 490 cm (I50 = 120 J)
based on the measured impact sensitivity and the oxygen
balance for trinitrobenzene, 2,4,6-trinitroaniline and DATB
[41]. Using the Wilson et al. data set, our frequentist and
Bayesian prediction ofI50 for TATB are 97 J and 95 J,
respectively. We note that the Bayesian prediction is less
certain since the variance of the predictive distribution
accounts for uncertainty related to the model coefficients,
as well as noise in the data. This difference in certainty for
the two models is illustrated in Fig. 2.

The frequentist and Bayesian predictions of I50 for
DATB are 61 J and 60 J, respectively. In the Storm et al.
data set, its measured value is 78 J [41], which is consistent
with the difference between the Wilson et al. data set and
the Storm et al. data set. Indeed, the former data set is
more sensitive than the latter for materials with a critical
impact level larger than 15 J. For more sensitive materials
(I50 < 15 J), the differences in critical impact level are
smaller [8]. In the Storm et al. data set, a sample mass
of 40 mg was used, while in the Wilson et al. data set, it
was 35 mg. It has been reported that nitroaromatics such

Table 6 Frequentist and Bayesian predictions of the critical impact level I50 (J) of DATB and TATB based on Eq. 12. The standard deviation of
the respective predictions are included in parentheses

Frequentist Bayesian

μ μD σ 2 σ 2
D predicted I50 (J) predicted I50 (J)

DATB 4.06 4.03 0.11 0.15 61 (21) 60 (24)

TATB 4.52 4.48 0.11 0.16 97 (34) 95 (40)
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Fig. 2 Frequentist and Bayesian
predictions of the critical impact
level of TATB, based on the
lognormal model fitted to the
Wilson et al. data set. The
red-shaded region comprises
one standard deviation on either
side of the exponential curve, as
calculated by Eqs. 16 and 19 for
the frequentist and Bayesian
prediction, respectively

as tetryl, 2,4,6-trinitrotoluene (TNT) and o-trinitrophenol
become more sensitive when the thickness or the amount
of sample is reduced [14, 15]. The smaller the sample, the
more energy is released per unit volume of explosive. The
Wilson et al. data set is based on a smaller sample mass
than that used in the Storm et al. data set, which may be one
of the main reasons for the difference in measured critical
impact levels.

Model sensitivity analysis

We now perform a simple sensitivity analysis of our fre-
quentist and Bayesian models, investigating how sensitive
they are to slight changes in the input variables upon which
the regression is based. From the “Bayesian regression”

section, we expect the Bayesian model to be more sensitive
to such alterations than the frequentist model, since the vari-
ance of the Bayesian predictive distribution also accounts
for uncertainty in the model coefficients. This can be seen
explicitly by observing how the predicted value of I50 for
DATB changes if we over- and underestimate the values of
BDE and Tex in turn in the Wilson et al. data set. When
multiplying BDE and Tex by (1 + ε), where ε = -0.05,

-0.04, . . . , 0.04, 0.05, the frequentist prediction of I50 for
DATB changes by no more than 10−13% of its original
value. On the other hand, the corresponding difference in
the Bayesian prediction ranges from 10−8% to 10−6%.

Inaccuracies in the measured critical impact level may
also affect how the model makes new predictions. We mea-
sure the sensitivity of our frequentist and Bayesian models

Table 7 The coefficient of determination (R2) between the log critical impact level of nitramine compounds and the reciprocal of the heat of
detonation, the reciprocal of the total energy, the reciprocal of the temperature of detonation, the bond dissociation energy, the bond dissociation
energy divided by the total energy, the bond dissociation energy divided by the heat of detonation, and the bond dissociation divided by the
temperature of detonation. The calculations are first based on using the weakest (N-N) bond, and then the weakest C–NO2 or N–NO2 bond. The
regression is based on the Storm et al. data set

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

N–NO2 0.34 0.12 0.44 0.04 0.10 0.41 0.34

C–NO2 or N–NO2 0.34 0.12 0.44 0.11 0.12 0.49 0.41
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by multiplying the values of I in the data set by (1 + ε),
where ε is drawn (separately for each molecule) from
a uniform probability distribution of range [-0.05, 0.05].
We then calculate the absolute difference in the predicted
I50 of DATB before and after perturbing the input, given
as a percentage of the original predicted value of I50.
Averaging over 500 such random simulations, we find
the predicted I50 of DATB to deviate from the original
prediction by a factor of 1.3% for both the frequentist
and the Bayesian model. This result indicates that inexact
experimental measurements may sully the accuracy of the
model.

Nitramines

The results for the nitramines based on the Storm et al.
data set are shown in Table 7. We see that neither 1/Q nor
1/Tex is strongly correlated with log I (R2 = 0.34 and 0.44,
respectively), and for the N–NO2 BDE, we get virtually no
correlation with log I (R2 = 0.04).

In addition to N–NO2 bond, some of the nitramines
contain one or more C–NO2 bonds. For such molecules, the
C–NO2 bond may be weaker than the N–NO2 bond when
three NO2 groups are attached to the same carbon atom.
This is due to repulsive forces between the NO2 groups
and also their attraction to electrons in the C–NO2 bond.

If the weakest bond in the model is taken to be either
N–NO2 or C–NO2, there is still low correlation between
log I and BDE, indicating that molecular rearrangements
and auto-catalyzed reactions play a key role in the initial
nitramine decomposition. Contrary to the promising result
for nitroaromatics, we only see a weak correlation between
log I and BDE/Tex (R2 = 0.41). This observation is
illustrated in Fig. 3, where log I is plotted against BDE/Tex.

We now comment on the outliers marked in Fig. 3. First,
bis-(2,2,2-trinitroethyl)-nitramine has a positive oxygen bal-
ance which results in a relatively low value of Tex since
the molecule does not contain enough carbon or hydrogen
to utilize all the oxygen. This leads to a particularly high
value of BDE/Tex, which illustrates how our model predicts
compounds with a positive oxygen balance to be less sensi-
tive to impact than what they actually are. Next, N,N’-dinitro-
methanediamine and N,N’-dinitro-1,2-ethanediamine con-
tain the –NH–NO2 functional group. The values of the
N–NO2 BDE for these molecules (220 kJ mol−1 and
214 kJ mol−1, respectively) are relatively high compared
with those of nitramines, which usually range from 150
to 170 kJ mol−1. We calculated BDE of these compounds
with the M06 functional and the 6-311+G(2d,p) basis set
in order to exclude the possibility for any erroneous geom-
etry optimization caused by the B3LYP functional. The
M06 functional with the 6-311+G(2d,p) basis set predicts

Fig. 3 The log critical impact level of the nitramines in the Storm et al. data set plotted against the bond dissociation energy divided by the
detonation temperature, along with the best-fitting linear regression line (R2 = 0.41). The weakest N–NO2 or C–NO2 bond is used as the weakest
bond for the model
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Table 8 The coefficient of determination (R2) between the log critical impact level of nitrate ester compounds and heat of detonation, total energy,
detonation temperature, and bond dissociation energy and ratios between the bond dissociation energy and heat of detonation, total energy, and
detonation temperature. The regression is based on the Meyer et al. data set

1/Q 1/Etotal 1/Tex BDE BDE/Etotal BDE/Q BDE/Tex
Data set (dm3 kJ−1) (E−1

h ) (K−1) (kJ mol−1) (kJ mol−1 E−1
h ) (dm3 mol−1) (kJ mol−1 K−1)

Solids + liquids 0.00 0.19 0.17 0.00 0.19 0.00 0.11

Solids 0.29 0.83 0.83 0.68 0.49 0.49 0.85

Liquids 0.05 0.16 0.16 -0.02 0.11 0.03 0.10

BDE for N,N’-dinitromethanediamine and N,N’-dinitro-
1,2-ethanediamine to be 244 kJ mol−1 and 241 kJ mol−1,
respectively. Thus, the divergence of these two molecules
from the regression line cannot be explained by the high
BDE calculated by the B3LYP functional alone.

The initial decomposition of nitramines can take
place through several mechanistic routes. For example,
at least four initial mechanisms for the decomposition
of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) have been
suggested: N–NO2 homolysis, HONO elimination, the
“tripple whammy” mechanism, and NONO isomerization.
Using the couple cluster theory, the Ea value of the HONO
elimination has been calculated to be lower than that of the
N–NO2 homolytic reaction for RDX [63]. A recent study
of the initial decomposition process of liquid RDX has
revealed that HONO elimination is likely to be the major
decomposition pathway [64].

In order to investigate whether HONO elimina-
tion is an alternative decomposition route for N,N’-
dinitromethanediamine, we calculate the energy required
to break the N–NOOH bond. The HONO BDE is calcu-
lated to be 420 kJ mol−1. When the hydrogen atom is
moved from the nitrogen atom to the oxygen atom, the
length of the N–N bond decreased from 1.379 to 1.257
Å (M06/6-311+G(2d,p)). The bond becomes more like a
double bond, making it unlikely to break without more
molecular rearrangements.

Nitrate esters

The nitrate ester data set (from Meyer et al.) consists of
both liquids and solids. Table 8 shows that when these
are considered simultaneously, none of our models seems
to give any satisfactory predictions. When solids and

Fig. 4 The log critical impact level of the liquid and solid nitrate esters in the Meyer et al. data set plotted against the bond dissociation energy
divided by the detonation temperature, along with the best-fitting linear regression line for the solids (R2 = 0.85)
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liquids are treated separately, no model shows any notable
improvement for the liquids. Denisaev et al. have found a
correlation between

√
H50 and ρQ, where ρ is the density,

for liquid nitrate esters [16]. The critical impact levels of
liquid nitrate esters are sensitive to experimental factors
such as the presence of bubbles in the liquid which can
significantly alter the impact sensitivity of a liquid explosive
[12].

There seems to be a strong correlation between log I and
BDE/Tex for solid nitrate esters, but as can be seen in Fig. 4,
this assertion is based on very few data points. In order to
investigate whether this correlation is genuine or just a result
of over-fitting, we perform a Bayesian model comparison
with a constant model (which asserts no correlation between
BDE/Tex and log I ) as in the “Bayesian regression” section.
When model complexity is accounted for, the Bayes factor
comes out to be 0.554, in favor of the constant model.
Hence, more data points are needed for further investigation
of the the merit of the linear model. Similar results hold for
the other seemingly promising model, namely (8), with a
Bayes factor of 0.552, again favoring the constant model.

Conclusion

By investigating 70 energetic nitroaromatics, nitramines,
and nitrate esters, we have evaluated seven models for
predicting critical impact level, the quantity from which
impact sensitivity is determined. Input parameters were the
molecules’ temperature of detonation, heat of detonation,
and bond dissociation energy. Our regression was based on
three separate data sets comprising 91 data points in total.

For the largest nitroaromatics data set, the bond dissocia-
tion energy divided by the temperature of detonation was the
best predictor of critical impact level, with a coefficient of
determination (R2) of 0.81. Leave-one-out cross-validation
gave a root-mean-square error (RMSE) of 6.1 J and the
absolute average deviation was 3.7 J between the predicted
and the measured values. A separate Bayesian regression
also assigned similar merit to the predictive power of
this model, also when accounting for model complexity.
The frequentist and Bayesian models predicted the critical
impact level of TATB to be 97 J and 95 J, respectively. Our
sensitivity analysis showed this prediction to be more robust
under changes in calculations of molecular parameters than
measurements of critical impact levels.

For nitramines, our analysis showed that the temperature
of detonation is a moderately useful predictor of critical
impact level, unlike the N–NO2 bond dissocation energy,
which we found to have virtually no such predictive ability.
Hence, N–NO2 homolysis is unlikely to be the only reaction
taking place in the initial phase of the decomposition.

None of the models was able to predict the critical impact
level of liquid nitrate esters, but for a small data set of
solid nitrate esters, there seemed to be promising results
for bond dissociation energy divided by the temperature
of detonation. However, our Bayesian model comparison
revealed that more data points are necessary to validate this
correlation.

Our results regarding nitroaromatics, nitramines, and
solid nitrate esters allude to the temperature of detonation
being a better predictor of critical impact level than the heat
of detonation. Moreover, a high ratio of bond dissociation
energy to temperature of detonation indicates low impact
sensitivity, whereas a small ratio suggests that the material is
highly sensitive to impact. Having evaluated the predictive
power of our models, we conclude that predicting impact
sensitivity of energetic materials with acceptable accuracy
may require inclusion of additional parameters such as
hardness, crystal defects, particle size, amount of sample,
heat conductivity, and heat capacity.
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