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Abstract—For a cognitive radar algorithm to be useful, it must
run on radar hardware that is flexible. Typically, this has been
viewed as requiring a software defined radio (SDR). With the
emergence of cheap, digital transceiver systems, such as the
Universal Software Radio Peripheral (USRP) from Ettus, these
systems are cheaper than ever to produce. This article reports
on the development of a USRP based radar system. Calibration
testing for radar cross section (RCS) is undertaken. The phase
noise is characterized as having a standard deviation of 0.02
radians. Detections of commercial aircraft at ranges up to 5.5
km are demonstrated. An adaptive update interval tracking
experiment, using the fully adaptive radar (FAR) framework
for cognitive radar, is reported on. In this experiment a small
unmanned aerial vehicle (UAV) is detected at ranges of up to 300
m. Using the radar equation with a signal loss proportional to
R−4, the interpolated maximum detection range is approximately
600 m.

I. INTRODUCTION

This article presents the development, calibration, and
preliminary testing of a software defined radio (SDR) suitable
for use as a cognitive radar testbed. Experimental testbeds are
critical for cognitive radar research. The dynamic response
of the radar to the environment limits the suitability of
simulations and prerecorded data for testing. If a simulation is
used, it would require a very high degree of fidelity. Realistic
models of clutter and target are needed at a level suitable to
simulate received waveforms on a pulse-by-pulse basis. Such
low level modeling is possible, but results in high processing
overheads and long run times. When prerecorded data is
used, it must be oversampled such that the cognitive radar
processing can demonstrate adaption by subsampling. Such
methods can work, as shown by Bell [1] and Mitchell [2], but
place limitations on what can be achieved. Further, there are
few publically available datasets with suitable oversampling.
A previous article by Smith [3], introduced the cognitive
radar engineering workspace (CREW) system developed by
The Ohio State University. While the CREW system has been
invaluable for conducting cognitive radar research [4], [5],
it is cost prohibitive for widespread deployment. Here, we
report on a smaller form-factor testbed that uses a Universal
Software Radio Peripheral (USRP) [6] for its digital backend,
and can be fabricated for a few thousand dollars.

Research on USRP’s and other SDR platforms has
been reported for several years, with a notable uptick
in such publications since 2011. An article from 2011 [7]
demonstrated a USRP based frequency modulated continuous
wave (FMCW) radar for weather surveillance applications.
It demonstrated the ability to detect multiple targets using
delay lines in a loop-back configuration. Moreno et al.
[8] discussed the potential for USRP based radar, and
demonstrated an experimental characterization of a system
based on a USRP NI2920. Other work [9] demonstrated a
simple experimental radar using the USRP B210. It showed
range profiles with target responses attributed to a large
building. These publications show the potential of using
USRP’s in experimental testbeds for radar. Kirk et al. [10]
have used the USRP in an experimental radar system for a
cognitive radar (CR) application focusing on radio frequency
interference (RFI) mitigation. The method introduces notches
into the transmit waveform bandwidth based on the sensed
spectral environment. This requires notching the spectral
content of the waveform on a pulse-by-pulse basis, and hence
the timing requirement is extreme. Previous work by the
authors [11] demonstrated an experimental radar system with
detection performance for air targets of several kilometers.
There, adaptive pulse repetition frequency (PRF) selection on
a dwell-by-dwell basis was demonstrated and the flexibility
of selecting waveform parameters was explained.

SDRs are attractive because they increase the flexibility
of radar systems. When the radar’s architecture is defined
in software, it is easy to change. Developing radars that
have different operating modes becomes much easier than
hard coded systems, where waveforms and other parameters
requires more effort to change. Alternatively, the same
physical system can be deployed for a completely different
activity by downloading new software to it. Invariably, there
is some radio frequency (RF) hardware that remains. The
more flexible this is made, the more diverse the operating
modes and uses of the radar can be. The flexible RF front-end
can be viewed as providing a large parameter space for the
radar to operate in. The precise parameter selections are
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then a function of the software. It is the presence of this
large, selectable parameter space that gives rise to a desire
to make radars cognitive. In an ideal situation, the radar
parameter selections would be matched to the environment
to maximize performance—for example, avoid interference,
maximize SINR, minimize track variance etc. The designer
cannot know ahead of time what the environment will be to
a sufficient level of detail to match the parameter selections
to it. Instead, if performance is to be maximized, the radar
must decide autonomously how to utilize the parameter space
in response to the environment measurements it is making. It
is this need to autonomously decide on operating parameters
that leads to the field of cognitive radar.

The best example available for system performance
optimization in response to stimuli is human cognition
[12]. In human cognition, sensory inputs are processed
through the central nervous system and result in actions
being undertaken. When the actions are executed the relation
of the person to the environment changes, and the sensory
inputs change accordingly. New actions are then decided on
and executed. This process continues in an endless cycle.
Parallels can be drawn to radar sensing using SDR with a
large parameter space and an algorithm that decides radar
parameters based on perceptions. The rise of the SDR and
the interest in cognitive radar therefore go hand in hand.

This article shows the development and characterization
of a radar testbed based on the USRP, that allows testing of
some adaptive or cognitive algorithms. The testbed is flexible
in parameter selection, that allows for selection of radar
parameters on a dwell-by-dwell basis. As shown previously
in this section, such a testbed is important in the field of
cognitive and adaptive radar since the selection algorithms
usually are dependent on the environment in some sense. The
testbed is relatively low cost.

To put SDR used in radar in context with the field of
adaptive and CR, Section I introduced SDR, adaptive and
cognitive radar research. Section II shows the hardware of
the testbed, and explains how it is put together. Section
III introduces the software architecture, the language and
libraries used in the radar program. It also contains a link to
the entire radar software available from Github. Section IV
shows a radar cross section (RCS) calibration of the system,
together with a system characterization. Section V shows
some results from a set of experiments performed using the
radar testbed. Both detection ranges for different targets, and
the use of adaptivity on track update interval is introduced.
Section VI discusses the conclusions of the development of
the testbed.

II. HARDWARE

The SDR system reported on in this article uses the USRP
X310 from Ettus as its digital back end. The X310 was
selected due to its high sampling rate, two input channels,
and the quality of RF front-end cards. The principles of the

Figure 1: Block diagram of the cognitive radar SDR system

development shown in this article apply to all USRPs using
the USRP Hardware Driver (UHD) library, but with some
limitations on sampling rate, number of channels or RF front-
end cards.

Figure 1 shows a block diagram of the system, and images
of the different components are given in Figure 2. A list of
components is given in table I.

A. Software Defined Radio

The USRP X310 is a device with an Field-Programmable
Gate Array (FPGA) and two analog-to-digital converters
(ADCs) and two Digital-to-Analog Converters (DACs)
devices. It supports sampling rates up to 200 MS/s with IQ
modulation, and hence it can sample a bandwidth of up to 200
MHz at 14 bit in receive and 16 bit at transmit. RF front-end
cards can be inserted, which enables the device to sample
at RF frequencies supported by the different cards. Software
controlled amplification and local oscillator (LO) is available
to fine tune the signal on both transmit and receive. The
device used in this testbed has the UBX-160 cards inserted,
which allows it to cover a 160 MHz bandwidth tune-able
between 400 MHz and 6 GHz. The carrier frequency is
software controlled, as most of the tunable parameters are.
This allows for a highly flexible device for transmitting and
receiving signals, and hence it should be well suited for radar
applications.

The device is controlled by a host computer through a

Type Manufacturer Model
Workstation HP Z440
2x 10Gb PCI-express card Intel 783345-01
2x 10Gb SFP Ethernet cables Generic Na
USRP Ettus X310
2x USRP RF Frontend cards Ettus UBX-160 card
High power amplifier MiniCircuits ZVE-8G+
2x LNA MiniCircuits PSA4-5043+ on TB-653+
3x S-band bandpass filters K&L 8FV40-3200/T200-O/O
2x S-band E-patch RX antennas Generic Na
1x S-band E-patch TX antenna Generic Na
SMA cables Generic Na
12V DC Supply Generic Na
12V-5V DC-DC converter Generic Na
Weather proof box Generic Na

Table I: SDR parts list
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dual 10 Gbps Ethernet connection, which allows for a high
data transfer rate between host and the device. The connection
itself supports transmit and receive at full bandwidth on two
channels. The limiting factor is the host computer which
has to process all the data. The host computer controls the
device through the UHD library, which supports functions
communicating with the FPGA on-board the device. All
functions called on the FPGA are pre-defined from Ettus and
are contained in the FPGA binary image supplied by Ettus.
There is no need for FPGA programming, and hence the
development can be performed in languages supported by
the UHD library which is easier to develop and debug than
developing FPGA functions.

B. RF equipment

To achieve long detection ranges in a pulsed mode, a
power amplifier is used. The MiniCircuits ZVE-8G+ [13]
amplifier with an third order intermodulation product (IP-3)
[14] of approximately 10 Watts is used producing a 20 dB
amplification over the maximum output power of the SDR,
given in Table II. The amplifier can be run in a saturated
mode when operating at a maximum output power and to
avoid non-linearities a cosine based waveform must be used.
Single tone pulses, linear chirps and non-linear chirps are
acceptable waveforms. If the amplifier is operated below the
compression point, non-constant modulus waveforms such as
orthogonal frequency division multiplexing (OFDM) [15] and
noise pulses can be used.

The antenna subsystem consists of an E-patch antenna
array with two elements spaced by approximately half a
wavelength for angle-of-arrival (AOA) measurements. The
manufactured transmitter antenna is an E-patch antenna
mounted with a short distance from the receiver array to
provide isolation between transmitter and receiver channels.

To calculate the angle from bore-sight for detected targets, we
can use an AOA calculation exploiting the measured phase
difference for the receiver antennas. If we define the element
spacing to be L, the angle from bore sight to be θ, the phase
difference measured between the antennas to be φ and the
wavelength to be λ, the angle can be calculated as follows:

φ = 2π
L

λ
sin(θ)⇒ θ = sin−1

(
φ

2π

λ

L

)
(1)

From this, the unambiguous angle can be calculated setting
φ = ±π:

θmax = sin−1

(
π

2π

λ

L

)
= sin−1

(
λ

2L

)
(2)

The receiver antennas are mounted with a spacing of
5.5cm, which is 0.58 times the wavelength at 3.15GHz.
The calculated unambiguous angle is ±59.7◦. The simulated
antenna diagram showed a 10dB loss at ≈ ±60◦, and hence
large targets may fold in through antenna side lobes.

The RF equipment is mounted in a weather proof box,
shown in figure 2 (b) and connected to the SDR with coaxial

Figure 2: Pictures of the different components of the cognitive
radar system; where (a) shows the antenna setup with the
transmit antenna on top and receive antennas at the bottom,
and (b) shows the RF front-end electronics with filters and
amplifiers

cables. The antennas and box are mounted on a simple
antenna rig depicted in figure 2 (a).

C. Processing computer hardware

The radar’s data processing system consists of three
modules: a FPGA, a workstation, and a Graphical Processing
Unit (GPU). The FPGA was part of the USRP and provides
low level signal processing and control of the USRP hardware.
Its most significant signal processing role is to perform Digital
Down Conversion (DDC) of the received waveform so that
true baseband can be passed to the workstation for further
processing. Future implementation of the matched filter on
the FPGA could be beneficial to free up resources on the
GPU for its other tasks.

A GTX 1080 Ti GPU is used for processing that can be
efficiently parallelized. Currently, this is the implementation
of the matched filter, the discrete Fourier transform (DFT)
required for Doppler and the Constant False Alarm Rate
(CFAR) processing. Stages, such as detection clustering
could be implemented in a parallel fashion on GPU. For the

USRP parameters
Number of channels 2
Frequency range 400 MHz - 6 GHz
Maximum output power 100mW
Digital-to-Analog Converter (DAC) resolution 16 bit
analog-to-digital converter (ADC) resolution 14 bit
Noise figure 4-5 dB @ 3.1 GHz
Maximum instantaneous bandwidth 160 MHz TX and RX
Maximum I/Q sample rate 200 MS/s
Memory size 1024 MB

Table II: Ettus X310 with UBX-160 cards
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time being. However, they are implemented on the Central
Processing Unit (CPU), where the CPU is a multi-core Intel
Xeon processor of model E5-1650 with 6 cores running at
3.6 GHz.

III. SOFTWARE

The USRP has several possibilities for software develop-
ment. The most common approaches are:

• GNU Radio
• Matlab USRP support through Communication Toolbox
• LabView NI USRP module
• C++ UHD library
• Python wrapper for C++ UHD library

GNU Radio is a graphical radio programming interface
that allows development with Python and C++. The initial
investigation into using GNU Radio for radar applications
showed that it was hard to get access to important features
in the USRP. For example, the functionality required for
phase synchronization between channels and synchronizing
the signal between transmit and receive was not available.

Matlab has USRP support through the Communication
Toolbox, although it contains a subset of the features
available in the UHD library. These limitations lead to
the conclusion that it was not the optimal development
environment for a USRP based radar.

National Instruments (NI) LabView supports control of
the USRP through the USRP module. In addition, LabView
can be used to write software to run on the USRP’s FPGA.
The possibility of writing both controller and FPGA code in
the same environment is a positive feature. Unfortunately, the
engineering flexibility required for cognitive radar applications
seems difficult to achieve in the LabView environment.

The C++ UHD library allows the necessary control of
the USRP to create a radar system with pulse-to-pulse
coherency and coherency between multiple channels. Pulse-
to-pulse coherency is essential for Doppler processing, and
coherency between channels are essential for AOA processing.
Arbitrary signal generation in C++ is a straightforward task,
and signal processing in C++/CUDA is also possible. The
UHD library does not allow for programming the FPGA
directly. However, implementation of blocks on the FPGA
through the Xilinx Vivado is possible as is the use of the
RF-network-on-a-chip (RFNoC) to place functionality on the
FPGA. There are methods in the UHD library to allow access
to these newly developed FPGA blocks. The outcome of the
above evaluation was to select the C++ UHD environment
to develop the USRP software defined radio (SDR). All
programming comments in the remainder of this article
should be taken as applying to this software development
approach.

A Python wrapper of the C++ UHD library has been
written, and it is shown to be slightly slower than a
C++ implementation [16]. It does not currently support

Ettus RFNoC, but it could be an interesting programming
environment to consider for future development, since it
allows the same control of the USRP as the C++ UHD library
with the simplicity of programming in Python.

A. Software development environment dependencies

As shown in the previous section, the C++ UHD library
was selected as the programming environment for developing
the USRP radar. The UHD library allows for control of the
USRP functions, such as setting up the radio, transmitting a
time series, receiving data coherently over several channels
and timing of the functions. The extra functionality needed in
a radar system is the waveform generation which is done in
C++ using the standard C++ library complex functions. Signal
processing of the received data is done on the GPU using the
CUDA programming language for parallel signal processing.
The matrix operations needed in the Kalman filter tracker is
supplied in the Boost library. Boost has many other features
used in the program such as thread handling, timing and
file system control. Qt and Qwt were used for the Graphical
User Interface (GUI) and data display such as plan position
indicator (PPI) and range-Doppler displays. Table III shows
the software dependencies.

Library Description
UHD [17] UHD library
Qt [18] Qt is used for GUI programming
Qwt [19] Plotting library for Qt
Boost [20] Boost C++ libraries
CUDA [21] GPU programming library

Table III: List of dependent software libraries

B. Waveform generation

Waveform generation is done in a C++ class object, based
on the complex number manipulation from the standard li-
brary. The only dependencies is the standard library functions
for vector and complex numbers. Three waveforms are cur-
rently implemented; rectangular, Linear Frequency Modula-
tion (LFM) and Non-Linear Frequency Modulation (NLFM)
pulses. The waveform generation has run-time adjustable
parameters such as pulse length, bandwidth, PRF and number
of pulses generated. The waveform is generated on a dwell-
by-dwell basis.

C. Range-Doppler processing

The range-Doppler processing is based on a matched filter
implemented with zero filling, fast Fourier transform (FFT)
and inverse fast Fourier transform (IFFT) for fast convolution
in the range domain, and a FFT in the slow time domain
for Doppler processing. The processing is standard for a
range-Doppler radar, but the parallel nature of the processing
allowed it to be efficiently implemented on a GPU. The GPU
implementation introduced a speedup factor of 50 compared
to the implementation on the CPU, even when using all 6
cores of the CPU. The use of the GPU allows an inexpensive
workstation machine to perform real-time processing for radar
applications.
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D. Detection processing

The detection processing implemented is the cell averaging
CFAR (CA-CFAR) [22] which compares the cell under test
(CUT) to an average of the signal power in a window of
neighboring cells. If the CUT is above a given threshold, it is
counted as a detection. The threshold is calculated to give a
specified false alarm rate. This method allows for a constant
false alarm rate detection against a varying noise floor [23].
The cell averaging can be implemented as a filter. The filter
is applied through convolution that makes use of the FFT
functions that can be optimized to run on the GPU. As such,
the CA-CFAR can be implemented on the GPU to reduce
runtime.

It should be noted that the CA-CFAR is likely to create more
than one detection per target. This is common for the method.
A clustering routine is used to identify individual targets from
the multiple detection the CA-CFAR produces. At the current
time, the clustering algorithm runs on the the CPU.

E. Angle estimation processing

The angle estimation processing is based on the multiple
signal classification (MUSIC) [24] algorithm. With two ele-
ments in the antenna array and an assumption of only one
target in the range-Doppler resolution cell. This assumption is
reasonable since the resolution cells are 0.75 m by 0.39 m/s
when the bandwidth is 160 MHz and the dwell time is 12.3
ms at 3.15 GHz carrier frequency, and it seems unlikely that
two targets could exist in such a small cell. The method can
be simplified to solve the trigonometric equation given in (1).
The method is dependent on the measured phase difference of
a target in the two antennas, the distance between the elements
and the wavelength.

F. Tracker

The tracker is a range-Doppler tracker, where the mea-
surement and state space is the range and range-rate (which
is proportional to Doppler velocity). A linear motion model
assumption is made. While such a simple motion model
does not necessarily give the best track performance, it is
a simple implementation and has proven successful in the
research conducted so far. Track initialization is currently
implemented by the radar operator via a manual mouse click
on the detection in the GUI. There is a plan to implement a
multiple hypothesis tracker with converted range, bearing and
range rate measurement [25], but this is outside the scope of
the current article.

G. Run-time considerations for signal processing

The new generation of gaming GPU’s contains several
thousands of cores combined with large memory, and can be
regarded as extremely powerful for calculations. The price
range for gaming GPU’s is much lower than NVIDIA’s Tesla
and Quadro cards. As demonstrated here, a gaming GPU
provide single point precision calculations at rates fast enough
to conduct real-time radar signal processing.

Most, if not all stages of the signal processing can be
implemented in parallel. Parallel processing efficiently
implemented on GPU is much faster than if implemented at
CPU, and can even compete with processing on FPGA. The
fast compilation and easy debugging allows it to be great
platform for both development of new algorithms, but also
achieve real-time requirements on the signal processing.

H. Software availability

The software reported on in this article for controlling the
USRP, performing the radar signal processing and creating the
GUI can be downloaded from Github1 at https://github.com/
jonasmc83/USRP Software defined radar.

IV. RADAR CALIBRATION

Radar calibration is critical for evaluating the performance
of a new system. This section reports on the two calibration
tests made of the USRP based radar to evaluate system per-
formance. The first was RCS calibration. The second, receive
channel phase characterization which is required for moving
target indication and angular measurement performance pre-
diction.

A. RCS calibration

The RCS calibration was performed against a small metal
sphere in an open field environment. The sphere was a
100mm diameter solid stainless steel ball bearing, shown in
Figure 3 (a). A RCS calculation of a 100mm diameter sphere
is shown in Figure 3 (b), where the RCS for the carrier
frequency 3.15GHz used in this article is -20dBsm. The small
size of the sphere compared to the wavelength results in the
scattering is in the resonance region. Due to the uncontrolled
nature of the test environment, it was not possible to perform
background subtraction that is common in RCS measurements
to separate the calibration sphere from the clutter. Instead, the
robustness of the ball bearing was exploited. It was thrown by
a volunteer giving it a Doppler shift that allowed its response
to be separated from the ground clutter.

A set of eight range positions were selected, and the
volunteer threw the sphere 1-3 times at each range position.
This gives a set of signal power measurements for the sphere
as a function of range. These measurements are depicted
in Figure 4, where each dot is a measurement. The scene
used made it difficult to perform measurements closer than
230m, and the low RCS of the sphere made it hard to
detect the sphere past 300m. The signal power variation is
approximately 2-3dB. We can say that this is an absolute
calibration using the knowledge of the sphere RCS calculated
as -20dBsm, but due to variation in the measurements it is
accurate to within 2-3dB. The line shows a 1

r4 curve fitted
for the dataset of thrown spheres, and using the knowledge of
the RCS to be -20dBsm the curve can be used for estimating
the RCS of other targets.

1https://github.com/jonasmc83/USRP Software defined radar
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(a) 100mm diameter solid stainless steel ball bearing sphere (b) RCS calculation of a 100mm diameter sphere; blue line is the
calculated RCS in dBsm as a function of frequency, and the red square
is the 3.15GHz point with value of -20.31dBsm

Figure 3

Figure 4: Measurements of thrown sphere at different ranges,
shown as dots, compared to a 1

r4 curve from the radar equation.
The 1

r4 curve is fitted to the measurements in an attempt to
perform an absolute calibration of the radar system.

B. Channel phase characterization

The phase noise for each channel is a limiting factor in
detection of slow moving targets close to the clutter ridge. The
noise of the phase difference between channels is a limiting
factor for angular estimation. A loop-back configuration to
characterize the phase noise of each channel, and the phase
difference between each channel, was set up. The loop-back
configuration was achieved by disconnecting the antennas
from the RF front-end, attaching two attenuators of 40 dB
of total 80 dB attenuation and a power splitter to have two
attenuated signal paths and then connecting the two signal
paths to the receivers. This setup allows the transmit signal to
be attenuated and fed into the two receiver stages, as shown
in figure 5. The cable delay is less than one fast time sample,

Figure 5: Diagram displaying the characterization setup, with
a 80 dB attenuator and a power splitter to emulate a point
target.

so this configuration produces an ideal target response at zero
range. A measurement of the absolute phase noise of each
channel were performed together with the phase difference
between channels based on this response.

A dwell consists of a number of pulses, 4096 in this
case. Each sample in figure 6 (a) shows 2 times the standard
deviation calculated over these 4096 pulses, and hence the
dashed curves shows an estimate of 2σ. The phase noise
is similar for both channels, and this is expected since the
channels are equal in the SDR and in the RF chain. Figure 6
(b) shows the same parameters as for (a), when looking at the
phase difference of the two channels. The noise shown here
directly affects the AOA measurement and will introduces
uncertainty in the angular measurements. An error of 0.02
radians as given in figure 6 corresponds to approximately 0.3
degrees error in the angular estimate.
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Figure 6: (a) shows the phase noise for each channel, and (b)
shows the noise of the phase difference between channels.

The conclusion we can draw from this characterization
is that the phase from pulse-to-pulse shows only a small
variation due to phase noise. This implies coherency from
pulse-to-pulse, and hence we can perform Doppler processing.
The phase difference between channels is also constant, with
a small variation due to phase noise. The implication from
this is that we can do AOA for angular measurements, since
the angular measurement is dependent on coherency between
channels. The SDR radar system can therefore do Doppler
and AOA processing.

V. EXPERIMENTAL RESULTS

A. Detection range

The system contains a 10W power amplifier and earlier
predictions of the detection performance of this system [11]
showed a substantial detection range, greater than 5 km for
airliner size targets. The same prediction shows detection
ranges of 3km and lower for smaller targets such as a light
aircraft. Figure 7(a) shows a detection of a small aircraft at
2.8 km distance, and Figure 7(b) shows a detection of a large
airliner aircraft detected at 5.5 km. This fits well with the
previous predictions of the detection capabilities of this radar
system.

B. Tracking small targets

The USRP radar is able to track small targets at short range.
Using a short pulse allows it to monitor a surveillance volume
close to the radar. An experiment with a small unmanned
aerial vehicle (UAV)—a DJI Mavic—was performed. The
pulse length was set to 0.8µs, which gives minimum range
of 120 meters. The PRF was set to 100kHz, which gives an
unambiguous range of 1.5km. The experiment is shown in
Figure 8(a), which shows a picture of the UAV, a satellite
photo of the test range and the position of the radar and track
of the UAV. The UAV path in the overlay is the actual track
of the UAV and it illustrates the angular accuracy of the AOA
estimation. Figure 8(b) shows plots of the range, Doppler
velocity and signal to noise ratio (SNR) of the UAV as it

flies first outward, and then back towards the radar. The black
dots are the radar detections and green squares are the tracker
output. The tracker keeps track until 350m. It looses track
when the target stops as it prepares to change direction. The
lost track happens because the track merges into the stationary
clutter and is not detected for several dwells. The operator
starts a new track as soon as the target becomes separate from
the clutter and the UAV is successfully tracked as it approaches
the radar. Using the rule of thumb from the radar equation
that a doubling in range corresponds to a 12dB drop in SNR,
a detection range of 600m can be extrapolated.

C. Adaptive update interval method using the fully adaptive
radar (FAR) framework

The paper by Christiansen [26] shows a method of
calculating a track update based on a cost function to
optimize some measure of resource usage, weighted against
the global mean square error of the tracker [1]. The article
shows the method applied on a simulated case. The method
has been implemented on the USRP radar and the required
interval until the next track update dynamically adapted
based on the the predicted track error. The method was
used in the case of the UAV track shown in the figures 8
(a) and (b). Figure 9(a) shows the tracker parameters of
range uncertainty, velocity uncertainty and selected update
interval respectively. The tracker uncertainty is relatively
constant since the optimization method decreases the update
interval as the target moves further from the radar. The
measurement uncertainty increases when the target is further
from the radar due to reduced SNR. The optimizer selects
shorter update intervals since the tracker has lower state
uncertainty with shorter update intervals and hence the global
track error remains quite constant despite the SNR drop.
Figure 9(b) shows the result of a cost function evaluation
using the actual update interval selected for a 1 s fixed
update interval experiment, and an experiment with adaptive
update interval. The cost function values based on the true
posterior information is smaller when using the adaptive
update interval, a method which attempts to minimize this
cost function based on predicted posterior information.

The experiment shown here is a work in progress. Research
is already underway to expand the parameters adapted to
include PRF and number of pulses in a dwell. The available
parameters to optimize over in this SDR testbed are currently;
carrier frequency, bandwidth, pulse length, PRF, number of
pulses in dwell.

VI. CONCLUSION

The testbed shown in this article is based on the Universal
Software Radio Peripheral (USRP) X-310, which is a
member of a line of software defined radio (SDR)s available
from Ettus. The USRPs are notable for their relatively
low price and high levels of system configuration. The
radio frequency (RF) hardware used for the front-end is
all connectorized, commercial off the shelf. As such, it
too is available at low cost and with minimal lead times.
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(a) Small aircraft detected at 2.8km distance with USRP based SDR
radar system

(b) Airliner type target (Boeing 737 class) detected at 5.5km distance
with USRP based SDR radar system

Figure 7: Demonstration of detection ranges of the USRP based SDR radar system

(a) Experimental setup of UAV flying outwards, turning, and flying inwards (b) Range, range-rate (Doppler velocity) and SNR plot
respectively, from top to bottom

Figure 8: Experiment showing tracking of small UAV target out to 350m and back
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(a) Tracker parameters, with plots of range uncertainty, velocity uncer-
tainty and the selected next update interval, respectively

(b) Cost function values based on true posterior information for two
experiments, where one experiment with fixed update interval of 1s is
shown in red, and adaptive update interval is shown in blue.

Figure 9: Experiment showing tracking of small UAV target, with showing track parameters and cost function values

The testbed can therefore be kept at low cost and hence
affordable to academia and smaller research projects. The
software is based on the USRP Hardware Driver (UHD)
driver library in C++ and CUDA code for signal processing.
The program can therefore run on a workstation with a
NVIDIA Graphical Processing Unit (GPU) installed. The
source code for the entire radar project can be found at
https://github.com/jonasmc83/USRP Software defined radar.

The system calibration section introduced a method for
absolute radar cross section (RCS) calibration and channel
characterization. The single channel phase characterization
showed that the system is coherent from pulse-to-pulse and
hence can perform Doppler processing for pulse integration
and clutter suppression. The phase difference between
channels characterization showed that the system is coherent
between channels, and hence can perform angle-of-arrival
(AOA) processing for angular estimation.

Earlier work has shown that the system’s detection ranges
for large airliners as 5.5km and a small aircraft as 2.8km.
Experiments have shown a detection range of a small
unmanned aerial vehicle (UAV) as more than 350m. An
experiment was conducted tracking a small UAV with a
method of adaptive track update interval implemented.

This illustrated that the system can autonomously adapt its
processing in real-time. Parameters that can be adapted at
runtime are; carrier frequency, bandwidth, pulse length, pulse
repetition frequency (PRF) and number of pulses in dwell.

The field of cognitive and adaptive radar research is
dependent on radar testbeds to perform experiments in
real-time. In these systems, radar parameters selection is
dependent on the scene the radar observes. In order to
validate algorithms it is therefore necessary to perform
real-world experiments. Such a testbed should be able to
adapt its parameters on-the-fly, such as PRF, pulse length,
bandwidth, waveform type, number of pulses in burst and
carrier frequency, in order to adapt its performance based on
the radar perception. This USRP based testbed presented here
is a demonstration of how such a testbed can be produced on
a low budget.
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