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Abstract—The application of acoustics to study the seabed
have for decades provided industry and science with valuable
information, and is still excels in terms of spatial coverage and
detail. An acoustic response from the seabed not only contains
information about the range, through the two way travel time,
but also the acoustic reflectivity of the substrate from the
strength of the backscatter response. As the signal strength
differs between substrate types, this information can be used to
detect and classify different seabed types. However, there are
ambiguities in the acoustic signatures and the reliance on ground
truth samples, for succeeding in this identification, is a limiting
factor. In this paper we present a way to mitigate this problem
using Hidden Markov Random Fields (HMRF) to perform
unsupervised segmentation of the backscatter response for the
purpose of determining different seabed types. The outcome of
this analysis is directly used to plan and conduct an autonomous
near-seabed camera survey to verify the classification results,
whilst complementing the acoustical data-set. The method is
tested in a full-scale experiment and performed in-situ onboard
a Kongsberg Hugin 1000 autonomous underwater vehicle (AUV).

I. INTRODUCTION

The deep seas are increasingly being explored in search
of natural resources and to promote scientific understanding
of deep-sea ecosystems and seafloor processes. Bathymetry
and backscatter measurements from acoustics has been used
as tools to map hydrocarbon seeps [1], hydrothermal seafloor
vent sites [2], polymetallic nodule fields [3], the presence of
active volcanic processes [4], cold seep fauna and habitats [5].
Shared for deep sea exploration is the relatively large areas that
has to be covered and time consuming launch and recovery
for near-seabed surveying. The use of autonomous underwater
vehicles (AUVs) can facilitate adaptive patterns in response to
the collected data, thus potentially enhancing the collected data
during the same deployment.

Supervised learning methods have previously been used for
segmenting the seabed into sets of known classes such as
gravel, sand, silt and mud [6]. A ground truth in the form
of labeled samples or images is however required prior to
training. This typically involves deployment of a remotely
operated vehicle (ROV), to obtain physical sediment samples
or video verification. Samples are also necessary for traditional
or manual seabed classification, where seabed features are
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Fig. 1. Illustration of a hidden Markov random field in two dimensions with an
iid. observation model. The hidden layer is depicted in gray and observations
in white.

defined locally and extrapolated using backscatter data. Varia-
tions in regional seabed characteristics, equipment, calibration
and environmental factors can prohibit transferring trained
classifiers or verification data to new areas.

Furthermore, there is variability in the equipment itself.
Multi-beam echosounders typically transmit using a single
centre frequency at a time. Many have several settings for
the centre frequency, which provides a trade-off between the
resolution and range. The backscatter response is generally
dependent on the selected frequency and pulse length. It
therefore has some inherent ambiguity, as different scattering
mechanisms can yield near identical responses over a range
of grazing angles for different material types. Multi-frequency
acoustic systems, gathering backscatter data across multiple
frequencies simultaneously, has been suggested as a way to
mitigate this ambiguity [7]. Another effect that adds to the
inherent ambiguity of backscatter is the presence of organized
roughness of the seabed. This can for example be ripples
in sandy sediments, caused by tidal currents. The acoustic
backscatter can then differ based on the survey azimuth, even
from signals in the same area [8].

The ambiguity in backscatter data can be minimized through
robust calibration routines, but is still difficult to apply without
verification data. Gathering multi-beam data from an AUV
allows for near-seabed camera lines planned in-situ, which



reduces the need for additional sampling after the first deploy-
ment. In this paper, results from an unsupervised near-seabed
survey experiment — performed autonomously — is presented.

The remainder of this paper is organized as follows: Sec-
tion II presents hidden Markov models and how it is used
in the context of seabed mapping. Section III presents the
pre-processing of the acoustic backscatter prior to segmenta-
tion. Section IV briefly describes the AUV and practicalities
surrounding the experiment. Section V describes the experi-
ment, segmentation and the path planning. Section VI briefly
describes the optical results. Finally, the paper is concluded
with a general discussion surrounding the results and future
work in section VII.

1I. HIDDEN MARKOV RANDOM FIELDS

Hidden Markov Models (HMMs) are stochastic models
where the process is composed of states, which cannot be
observed directly. The probability distribution of a hidden state
is dependent on the value of the states preceding it. In the
HMM model this can be thought of as a chain of states, where
the dependency between them can for example be in space or
time. To make the problem tractable for large problems with
a high number of hidden states, the history of the process is
assumed to be encoded fully into a limited number of past
states (referred to as the Markov property). A Hidden Markov
Random Field (HMREF) is a generalization of the hidden layer
to multiple dimensions, where the probability distribution is
conditional on a set of co-variates, e.g. the spatial neighbour-
hood. In this work, the hidden states are taken to be discrete,
or categorical, where one state is attributed to a certain seabed
class. Figure 1 contains an concept illustration of an HMRF
defined on a square lattice with an identical and independently
distributed (iid) likelihood model, i.e. observation model.

Let £ = {1,2,...,L} be the set of possible values for
the hidden states, where categorical labels are represented as
integers. The hidden layer is given by the states

X ={z,...,zp|z; € L}

These hidden nodes forms an undirected graph G = {V, £},
where the vertices V are the hidden states and £ are the edges
that connect them. The neighbourhood set C; of a node consists
of the nodes that are directly connected to it.

Ci ={j € VI(i,j) € &}

Given its neighbourhood set, a node is independent of the
rest of the nodes in the graph due to the Markov property.
That is, its conditional probability is fully determined by by
P(X;|X; € C;). This is important, as global labeling can be
performed by considering local properties.

For regular HMMs, dynamical programming principles can
be used to compute the posterior marginal distributions of the
hidden states given the observations, P(X|y1.»,), and the most
likely sequence of states. However, these algorithms does not
directly apply to inference with general graphs that contains

loops. In these instances one must typically use approxima-
tions or Markov Chain Monte Carlo (MCMC) techniques and
accept a trade-off between accuracy and computational burden.

Maximum a posteriori (MAP) estimation seeks to find the
most probable value for a random variable given its likelihood
function and prior probability. We take the prior probability to
be given by the configuration of the HMRF. The criterion we
seek to maximize can be stated as follows

% = argmax{P(y|x,0)P(x)} (1)

That is, we are interested in finding the mode of the
posteriori distribution given a likelihood function of known
parameters ©, and the observation. In this work the likelihood
function is taken to be a Gaussian distribution with unknown
parameters, (1, o) that must be estimated for each label L.

P(le, ®L> NN(MLaUL)

The HMRF prior model, P(x), can be represented in
terms of local energies or cost functions defined on each
neighbourhood (maximal cliques). The equivalence of the local
properties and global properties has been established in the
Hammersley-Clifford theorem [9]. The local energy function
can be defined as

1
P(x) = e V™ 2
Where
Ux) =D W(x), Z=7) eV
ceC rzeX

is the sum of clique potentials, or local energies ¥.(x),
and a normalizing constant Z (also called the partition func-
tion). The clique potential function selected depending on the
problem to exhibit the desired global characteristics. For this
experiment, the Ports model was selected as the prior energy
function, which penalizes any non-zero difference between
labels equally regardless of which labels are compared [10].

U(zy,x;) = Amin{(x; — z;)?, 1} 3)

The parameter, A, adjusts the strength of the smoothness
prior. A value of A\ = % was used with a 5x5 neighborhood.

To calculate the exact prior distribution, Z must be eval-
uated, which involves a sum over all possible configurations
in X'. This is prohibitive even for problems of moderate size
[11]. The same approach as [12] is therefore taken, where the
problem is solved using a greedy strategy through iterative
optimization (iterated conditional modes). This approach con-
verges fast, but has no global optimal guarantees and can be
sensitive to the choice of initial values.

The unknown parameters (i, o0y,) of the likelihood func-
tion are estimated through expectation maximization (EM)
given a fixed configuration for the Markov field. First, the
posterior distribution is computed using Bayes rule.



p(yilzi, 0, or)p(L|x;, C;)
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Where y; are the observations and L are the possible hidden
states. The parameters are then updated as

N+ _ Z?:1 P(L‘yi)yi
B YL P(Lly)

ot — Z?zl P(Llyi)(y; — ML)2
o > iz P(Llys)

In practice, the combined estimation of labels and likelihood
function parameters is done through alternating steps of expec-
tation maximization (EM) and maximum a posterior prediction
(MAP). EM updates the mean and variance for each class
given a fixed spatial configuration, whereas MAP updates the
spatial configuration (labeling) given a fixed likelihood model
for each class. To get the process of iterative MAP and EM
stages started, the initial likelihood parameters are estimated
based on a K-means clustering of the observations.

P(Lly;) = “)

®)

(6)

III. MULTIBEAM BACKSCATTER

The physical process of seafloor scattering can be consid-
ered to be a random process [13]. The envelope of narrow-
beam acoustic reverberation has a tendency to follow a log-
normal distribution at low grazing angles, especially for a
moving observer [14]. When including the near-nadir region
the distribution becomes skewed and is better characterized as
a log-gamma distribution [15].

For the purpose of segmentation, it is desirable to have a
normalized mean across the swath. In particular, the physical
backscattering process has a dependency on the grazing angle,
which varies with the seabed type. This causes the backscatter
to deviate systematically across the swath. By removing the
angular dependency through normalization, the full swath can
be used uniformly for segmentation. For seabed classification
on the other hand, this variation with angle is desirable as it
provides additional information about the seabed substrate.

The multi-beam used in this experiment was the Kongsberg
EM2040. It has built-in compensation for frequency-dependent
transmission loss, spherical spreading, ensonification area,
and angular seabed response variation. These corrections are
applied based on the assumption of a flat seabed and a fixed
angular response model [16]. The system stores the necessary
values to remove these corrections. These values were not
available through the Hugin SDK backseat control system
(used to control and interface with the sensors and AUV)
at the time of the experiment, and the removal of these
assumptions during online processing is therefore left to future
work. Due to the imperfect normalization, a component which
depends on incidence angle remains. This is the component
that the normalization steps will seek to remove. The approach
is similar to what would be done had the aforementioned
assumptions been corrected for, but may contain artifacts from
the built-in correction routine.
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Fig. 2. Comparison of the backscatter output directly from EM2040, sliding-
window normalization, and Kalman filtered backscatter respectively. The units
of the axes are in meters, and the color-scale in dB.

The subsequent procedure is conceptually similar to the
angular dependence correction outlined in [13]. In this proce-
dure, the responses are placed into angular bins based on the
incidence angle, where each bin is 1° wide. The mean level of
each bin is computed for a subset of the data. The difference
between these averaged values and a reference level is then
added as a normalization factor. The reference values are
typically an per-ping average across some portion of the swath,
excluding the specular returns around nadir. The averaging is
either performed for a whole survey line at a time or based
on a sliding window. A large window better compensates for
statistical variation, but increases the chance of averaging over
multiple seabed types with different angular responses. This
may cause a problem as the average over the incidence angle
bins will contain not one, but multiple signatures.

Rather than using a sliding window approach, we tackle
the problem by considering the per-angle bias to be a Wiener



process, i.e. a random walk process. The normalization values
are considered biases that must be estimated. This is done by
applying a Kalman filter per incidence angle. Note that this
makes an assumption of a normally distributed noise process,
which has been pointed out is not the case for the near-nadir
region. Consequently, we accept that there will be a bias in
the estimate in this region, and leave an optimal estimator
to future work. The Gaussian assumption allows for better
computational characteristics on the other hand, as there is no
closed-form solution for the mode of a gamma distribution.
The filter is a simple integrated noise process, formulated as
follows in continuous time.

j:¢:w
(N
Yp = Ty + U

Where the incidence angle bin is indicated by the angle ¢,
w 1is the process noise driving the random walk process, and v
is the measurement noise. The measurement presented to the
filter is the difference between the measured backscatter for
that incidence angle and the mean backscatter measurement
29 = ag — a. The mean across the swath starts from 0 = £15
to avoid the specular returns around the nadir region.

Instead of adjusting the length of the sliding window, the
co-variance of the random walk process and noise process are
tuned. The process co-variance is set according to how quickly
the underlying seabed substrate changes its characteristics,
while the noise co-variance is set according to the expected
noise in the measurements themselves. The interested reader
is referred to [17] for the Kalman update equations and
underlying theory. Both of these parameters are likely to vary
in their applicability based on the region being surveyed and
survey pattern. This is also the case for the length of the
window in the sliding window approaches however.

The collected backscatter was normalized for each ping and
then interpolated to a fixed grid, weighted by its quality factor.
The quality factor is the standard deviation of the measured
time-series weighted by the range [18], and is one of the
outputs from the system. A comparison of the raw output from
the echosounder and re-normalized backscatter can be seen in
Figure 2.

The built-in normalization has some clearly visible artifacts.
Notably, there is a crossover artifact around half the width of
the swath, where it switches between two models of angular
variation. It is also unable to normalize the region around nadir
properly. The middle figure contains a re-normalization of the
EM2040 output using a sliding window average approach with
a window size of 400 pings. Finally, a normalization based on
bias estimation using Kalman filters is shown. A quantitative
comparison of the normalization schemes is not performed
here, as this should be performed on raw data without the
Kongsberg time-varying gain and normalization applied. The
Kalman filtered approach seems to provide a slightly smoother
nadir area, which helps during the segmentation.

IV. EQUIPMENT

The AUV used for this expedition was the Kongsberg Hugin
1000 HUS. Overall specifications is shown in Table I. Hugin is
equipped with a dedicated payload processor, where plugins
can be loaded to perform remote/backseat control tasks. Its
processing time is however shared with other functions such
as data logging and sensor control. Autonomy on AUVs can
require interpretation of spatial and/or temporal data, which
can be computationally intensive. This can interfere with
the other running tasks on the payload processor, or not
receive high enough priority to perform the autonomy tasks
successfully. As a solution to this problem a co-processor
dedicated to autonomy was used, allowing algorithms to be
designed and tuned with a fixed processing power in mind. A
Nvidia Jetson TX2 was used as this stand-alone co-processor.

TABLE I
KONGSBERG HUGIN 1000 HUS SPECIFICATIONS
Weight ~1000 kg
Length ~5.5m
Diameter ~0.75m
Speed 1.0ms™! to 3.0ms~?!
Depth 3000 m
Endurance 16hrs @ 2.1 ms—1, with instruments
Navigation INS: IMU, DVL, depth, USBL, GPS, Compass,
Terrain navigation, UTP
Communication Acoustic, RF, Iridium, Ethernet, WLAN
Ex. payloads EM2040 MBE, HISAS 1030 SSS, CTD, ADCP,
Camera, Chemical sniffer, Sub-bottom profiler

The software integration consisted of a backseat plugin
running on the payload processor, which interfaces with the
AUYV through the Hugin software development kit (SDK). This
plugin acts as a translation layer between the Nvidia Jetson
TX2 and Hugin for sensor data and remote control commands.
The message protocol defined in the LSTS toolchain (IMC)
was used for the data exchange [19]. More details of the inte-
gration can be found in the cruise report from the experiment
[20].

V. EXPERIMENT

The following section presents the experiment that was per-
formed and the steps performed on the normalized backscatter
once the whole area had been covered. The survey area was
selected based on side-scan sonar data from 2013, shown in
Figure 3, where a boundary between two types of sediments
was clearly visible, possibly due to a subsurface landslide.

The experiment was executed by first covering a target area
in a pre-planned survey. Upon completion, the autonomous
survey was initiated through a command over the acoustic
communications link. The takeover could easily be done
automatically, but was left semi-automatic to retain as much
control as possible during the experiment.

A. Segmentation

Following coverage of the area, the backscatter is segmented
into a discrete number of classes by modeling the probability
distribution as a hidden Markov random field (HMRF) with



Fig. 3. Synthetic aperture sonar previously gathered in the target area. This
was used to pick the location for the experiment.

Fig. 4. Segmentation of the normalized backscatter into two classes, with the
generated camera lines in red and actual path of the AUV in blue.

a Gaussian likelihood model. This model accounts for seabed
types being characterized by distinct Gaussian distributions,
but also integrates the notion that a location is more likely
to belong to the same class as its neighbors. The result can
be seen in Figure 4. The relatively square edges along the
survey directions are possibly artifacts from the time-varying
gain applied by the instrument as it crosses the areas.

If an additional class is added to the segmentation, the small
area at the top is separated into its own class, but the nadir
area also has a visible impact on the result.

B. Path Planning

One camera transect per class was planned by maximizing
the distance to other classes, and joined together by minimiz-
ing the distance traveled. To represent distance to other classes,
the distance transformation is applied to the segmented image
[21]. The transformation is applied once per class, where all
other classes are considered to be a boundary. The portions
with missing data are not considered to be boundary objects
if in the interior of the class being considered. This in practise
causes the distance transform to ignore small interior holes,
but also assumes that the area has sufficient coverage. The
distance transform performed on the segmented backscatter is
shown in Figure 5.

—

Fig. 5. Distance transform for the two classes being considered.

An heuristic approach to the path planning was chosen,
where local maxima of the distance transform is used as
the center-point for the camera lines. A discrete number of
orientations of the camera lines are evaluated by taking the
sum over the distance transform along each orientation. The
orientation with the highest value was selected for this exper-
iment, but one could also imagine this to be embedded into
an optimization problem which weighs the distance traveled
against the separation between the classes. The camera lines
are connected by casting the problem into a traveling-salesman
formulation, where the center of the camera line is a location
that must be visited, only accessible through its entry and exit
line. Since the number of classes were low in this experiment,
this was solved by brute force, but approximation strategies
can be applied for the problem in the general case.

For general path planning, a soft threshold should be applied
to the distance transform to upper bound the reward by moving
away from the other class. This is especially important when
weighting the distance travelled against the class separation.
A sigmoidal function can for example be utilized for this

purpose.

VI. RESULTS

The experiment was performed in a fjord with relatively
high turbidity, and hence the visibility of the seabed from the
AUV was low. Both a conventional camera and underwater
hyperspectral imager (UHI) was mounted on the AUV. The
RGB camera was not able to observe the seabed, however.
For this reason the UHI is used. The altitude set-point of the
camera lines were set at 6 m due to operational constraints
such as collision avoidance requirements, pitch capability, and
the likelihood of encountering seabed rockfaces. An RGB pro-
jection of the hyperspectral imagery can be seen in Figure 6.

The noise level of the images are apparent, and are incon-
clusive with respect to the texture of the seabed. There is a
slight shift in brightness for the second camera line compared
to the first however. This is also observed in Figure 7, where
an averaged spectral response for the transects are shown. The
average is taken at the middle of the cross-section, to avoid
issues with varying attenuation with distance.



Fig. 6. Excerpt from camera line 1 and 2 respectively. These images are RGB
projections from the hyperspectral underwater imager (UHI), which has highly
light sensitive optics. The images are normalized for cross-track variability
using the same normalization values for both camera lines.
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Fig. 7. The raw digital counts of the hyperspectral camera obtained by taking
the mean along the middle part of the swath for each camera line. These values
has not been normalized in any way, and the altitude was fairly constant at
5.8m to 6.0m

The possibility that the turbidity in the water changed
slightly from one camera line to the next cannot be excluded
however.

VII. DISCUSSION

An autonomous near-seabed survey was performed by seg-
menting the acoustic backscatter response and visiting each
class by maximizing the distance between the camera lines and
the class boundary. Figure 8 contains plots of the probability
density functions of the estimated backscatter classes. The
histogram is a collection of all values. Due to the central
limit theorem, it is expected that the collection of all the
seabed responses will tend towards a normal distribution. This
illustrates that it is difficult to segment the seabed without
considering the spatial localities.
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Fig. 8. The two classes found are given by puy = {—31.5,—33.8} and
o = {1.47,1.45}. The probability density functions of these are shown
together with a normalized histogram of all soundings combined.

Fig. 9. The segmented map according to the likelihood models estimated,
applied without any spatial smoothing.

Figure 9 shows the case where Bayes classification is
performed using the two found distributions. This illustrates
the amount of spatial smoothing that is applied by the prior
model.

While the approach worked well for this small-scale ex-
periment, there are unresolved issues that must be addressed
before the method can be applied in the general case.

First, the path planning described here does not take the
bathymetry into account in its planning. While this problem
can be mitigated by excluding problematic areas, the general
case can be solved through discrete or continuous optimization
by including a penalty in the cost function.

Second, the selection of the number of classes has not been
discussed. For this experiment, the area was of limited extent,
and the expected number of classes was known and fixed
ahead of time. The problem of determining the number of
classes can either be approached heuristically by considering
the morphology of the segmented areas, or statistically by
considering the estimated likelihood parameters for a given
number of classes. The closeness of the distributions can be
quantified through information theoretic metrics such as the



Kullback-Leibler divergence or Bhattacharyya distance [22],
[23]. Alternatively, one can consider the parameter space a
part of the inference problem. This be estimated through non-
parametric Bayesian inference, using MCMC or variational
inference methods [24]—-[26]. The computational cost for these
methods can be prohibitive for in-situ usage however.
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