
FFI-rapport 2009/01934

Interoperable service discovery:
Experiments at Combined Endeavor 2009

Frank T. Johnsen
Joakim Flathagen

Trude Hafsøe
Magnus Skjegstad

Nanda Kol (NC3A)

Forsvarets forskningsinstitutt/Norwegian Defence Research Establishment (FFI)

17.11.2009

2 FFI-rapport 2009/01934

FFI-rapport 2009/01934

1086

P: ISBN 978-82-464-1724-0
E: ISBN 978-82-464-1725-7

Keywords

Tjenesteorientert arkitektur

Eksperimentering

Nettverksbasert Forsvar

Service discovery

Approved by

Anders Eggen Project Manager

Eli Winjum Director of Research

Vidar S. Andersen Director

FFI-rapport 2009/01934 3

English summary
This report summarizes the Web services discovery activities in project 1086. In particular, we
discuss our experiments at Combined Endeavor, where we performed joint experiments with the
NC3A in the Netherlands in 2009. The standardized Web services discovery mechanisms are well
suited for use in networks with high bandwidth and fixed infrastructure, whereas experimental
solutions must be used in disadvantaged grids. Through our experiments we show how
interoperability between the experimental and the standardized mechanisms can be achieved
using service discovery gateways.

 4 FFI-rapport 2009/01934

Sammendrag
Denne rapporten oppsummerer aktivitetene innen Web services discovery i prosjekt 1086, og tar
spesielt for seg eksperimentene vi utførte på Combined Endeavor i samarbeid med NC3A i
Nederland i 2009. De standardiserte Web services discovery-mekanismene egner seg godt i
nettverk med høy båndbredde og fast infrastruktur, mens eksperimentelle løsninger må benyttes i
disadvantaged grids. Vi viser dette i eksperimentene, og tar for oss hvordan interoperabilitet
mellom de eksperimentelle mekanismene og de standardiserte mekanismene kan oppnås ved hjelp
av service discovery-gatewayer.

FFI-rapport 2009/01934 5

Contents

1 Introduction 7
1.1 Combined Endeavor 7

1.2 NATO Friendly force information (NFFI) 9

2 Motivation - service discovery at (and across) different
operational levels 10

2.1 Operational levels 11

2.2 Vertical integration 13

2.3 Horizontal integration 15

2.4 Web services standards 15

3 Evaluation of service discovery mechanisms for tactical
mobile networks 17

3.1 An overview of MANETs 17

3.1.1 Reactive routing 18

3.1.2 Proactive routing 18

3.1.3 OLSR 18

3.2 Service discovery mechanisms 20

3.2.1 WS-Discovery 20

3.2.2 Peer-to-peer based service discovery 22

3.2.3 Mercury 31

3.2.4 SAM 35

3.3 Conclusion 40

4 Achieving pervasive service discovery 41

5 Registry experiments 51
5.1 Experimentation environment 52

5.2 Federation mechanisms 52

5.3 Federation approaches 52

5.3.1 Active joining (preferred approach) 53

5.3.2 Manual configuration (alternate approach) 53

5.4 Lessons learned 54

5.4.1 Federation approach 54

5.4.2 Security infrastructure 54

5.4.3 Registry profile interoperability 55

5.4.4 Unique identification system 55

 6 FFI-rapport 2009/01934

5.4.5 The overall experiment 55

6 Summary 56

References 58

Appendix A Terminology 60

Appendix B Bloom filters 62

FFI-rapport 2009/01934 7

1 Introduction
The NC3A and FFI performed a joint experiment at Combined Endeavor 2009 (CE) in the
Netherlands. We interconnected two mobile ad hoc networks (MANETs) and two wired intranets,
which served as tactical mobile and tactical deployed networks during the experiments. It should
be noted that in this report we use the term “MANET” in a general sense, referring to both
military and civil technology supporting wireless, mobile networking in an ad hoc manner. The
goal was to demonstrate cross domain Web services, featuring such aspects as service discovery
and service invocation. Delay and disruption tolerant proxies (DSProxys) were used to ensure
cross domain Web services invocation. Service discovery was achieved by using suitable
mechanisms in each network, and gateways for interoperability.

1.1 Combined Endeavor

In previous experiments we have shown that it is possible to invoke Web services in military
networks. At CE, we wanted to explore the use of Web services technology in a combined
operation, by employing service discovery and invocation both in and across heterogeneous
military networks. We wanted to employ Web services standards as much as possible,
augmenting the system with proprietary, experimental solutions only where necessary. We
wanted to test our prototype DSProxy, which can enable COTS Web services clients and services
to operate across heterogeneous environments. By deploying the proxy software locally in each
network node, the proxy can intercept the standard Web services invocation locally. This means
that SOAP over HTTP and TCP is used between client and proxy, and between proxy and server.
However, the proxy supports compression, multiple transport protocols and adds delay and
disruption tolerance, meaning that the communication between the proxies can be performed
across heterogeneous networks. A simple deployment like this with locally deployed proxies
communicating across heterogeneous networks is shown in Figure 1.1.

Figure 1.1 Locally deployed proxy configuration.

 8 FFI-rapport 2009/01934

Also, we wanted to achieve pervasive service discovery. In previous experiments we have
performed the service discovery at design-time (i.e., the service endpoints used in the experiments
have been hardcoded and static in the applications). This way of using Web services is common
in civil applications, where the services and the network infrastructure are stable. In tactical
networks, however, there is a need for run-time discovery, since the dynamic nature of the system
means that services are transient. That it is possible to use Web services standards at the strategic
level where the infrastructure is based on Internet technologies is obvious. Web services were
designed for use in such networks. However, we wanted to experiment with this technology at
the tactical level, both for deployed and mobile networks. This report focuses on the service
discovery aspects of the experiments.

We wanted to explore two cases:

• First (see Figure 1.2), we wanted to show pervasive use of Web services (i.e., discovery
and invocation) across network and national boundaries. We used a traditional setup,
where direct communication between the two MANETs was not possible. Instead, all
communication had to go via the interoperability point between the two HQs.
Interoperability between the nations was provided using TACOMS (communications
standard for joint operations, see http://www.tacomspost2000.org/) and the common CE
backbone.

• Second (see Figure 1.3), we wanted to try another use case: That of direct interoperability
between the two MANETs. This required the use of another interoperability point to
connect the two different technologies together.

Figure 1.2 CE experiment setup, interoperability between HQs.

http://www.tacomspost2000.org/�

FFI-rapport 2009/01934 9

Figure 1.3 CE second experiment setup, interoperability between MANETs.

We provided several services in the networks, and used applications for blue force tracking, chat, etc. For a
more complete discussion of the scenario and applications, see [39]. Since blue force tracking is all about
getting position information about friendly forces, it is also in a way related to service discovery since it can
enable you to find out where your services are located in the field, if you know both the services provided by
the node and its position. Our experiments used NFFI for blue force tracking.

1.2 NATO Friendly force information (NFFI)

NATO developed this format for blue force tracking in Afghanistan, the NATO Friendly Force Information
(NFFI) Afghanistan Force Tracking System. The current version of NFFI is 1.3 as published in draft
STANAG 5527. NFFI consists of a message definition and message protocols. The message format is defined
by an XML schema containing both mandatory and optional fields. The position data is a mandatory part of
the document, and contains information about position (longitude, latitude, altitude) and velocity.
Identification data is also a mandatory part, and contains information about the object’s name and a 15
character text string from APP-6A/Mil STD 2525B. Thus, the position and identification data contain all the
information needed to draw a symbol on a map. Furthermore, a status field contains the operational status of
the object. All the other fields are optional, and may contain contact information, telephone numbers, etc.
An NFFI track comprises a lot of information (see Figure 1.4). However, most of this information does not
need to be sent in every update, since it is either static or has a high classification. Basically, the only part of
an NFFI track that needs to be transmitted in the tactical battlefield is the mandatory part of the NFFI
information, i.e. the position and dynamics data. This information is defined as a PositionDataType (PDT) in
the NFFI schema. The HQ can collect several PDTs and build a complete NFFI message, potentially adding
some of the extra, optional information that can be of use higher up in the hierarchy.

 10 FFI-rapport 2009/01934

Figure 1.4 NFFI tracks showing mandatory and optional data, along with usual security requirements
(from [27]).

2 Motivation - service discovery at (and across) different
operational levels

One of the main goals of Network Enabled Capability (NEC) is to increase mission effectiveness
by interconnecting military entities. Sharing information between decision-makers can help guide
them towards making the right decisions at the right time, and a common information
infrastructure is needed to facilitate sharing of relevant information across system and national
boundaries. This leads to a requirement for a flexible, adaptable and agile information
infrastructure which can support all the information needs of national forces, and at the same time
support interoperability. The information infrastructure will have to support a number of different
usage scenarios, from fairly static environments where services are stable, to dynamic
environments where both services and service users come and go in a non-deterministic fashion.
The NATO NEC feasibility study envisions the concept of a Service Oriented Architecture (SOA)
to become pervasive in this information infrastructure. In a SOA, networked resources are made
available to others as a collection of services, often implemented using a technology called Web
Services. Current Web Service solutions are designed for Internet-type networks where
bandwidth is abundant and nodes are stationary. Applying such technology directly for military
purposes may not be feasible, especially when considering the tactical level where resources are
scarce (low bandwidth) and the network consists of mobile units leading to frequent topology
changes.

In a highly dynamic environment, being able to locate and invoke Web Services becomes a major
challenge. The process of identifying a service, known as service discovery, is an important part
of any SOA, but is particularly challenging in dynamic environments such as military tactical

FFI-rapport 2009/01934 11

systems. A service discovery architecture for such an environment should reduce the amount of
manual configuration, enable automatic discovery and selection of relevant services, and offer a
complete and up-to-date picture of the services available at any given point in time. The
discovery infrastructure must provide a fresh view of available services. Responses to queries
should mirror the current state in the service network and should not advertise services that are no
longer present on the network. This is known as liveness information. Moreover, the
infrastructure should be robust in terms of partial failure as well as bandwidth efficient, since
nodes in dynamic environments may have wireless connections with low network capacity.

2.1 Operational levels

An operational network is complex (see Figure 2.1). There are different levels with different
communication needs and solutions. It is apparent that a single service discovery mechanism will
not meet all demands. At the lowest level, there are a few highly mobile units. Moving up in the
hierarchy there will be more units, but less mobility. The command posts are typically deployed
tactical networks.

Looking at the different operational levels in context (see Figure 2.2) we can see that the
characteristics vary from level to level. A strategic network has infrastructure and is typically not
dynamic.

Figure 2.1 Operational network (from [1]).

 12 FFI-rapport 2009/01934

A tactical deployed network is more dynamic than a strategic network, typically depending on
radio or satellite communication. A mobile tactical network, i.e. networked single units taking
part in an operation, typically yield the highest dynamicity seen in an operational network. On
the other hand, the total number of services available will be highest in strategic networks. The
deployed tactical network will have a more specialized need for services, and thus most likely a
lower number than on the strategic level. A mobile tactical network will have and use the least
number of services. Not only does the limited bandwidth at this level limit the possible amount
of services and communication, but also the need for services will be location and mission
specific.

Figure 2.2 Domain complexity.

No single, currently available service discovery mechanism can fulfill all the demands that a
military operational network places on service discovery. Because of this, we suggest an
architecture where each operational level can use the service discovery mechanism best suited for
that network type. For instance, in a network deployment as the one shown in Figure 2.1, a
service discovery solution consisting of three different mechanisms could be suitable. Such a
solution, illustrated in Figure 2.3, would utilize registries in the strategic network, peer-to-peer
(P2P) mechanisms between deployed units, such as command posts, and ad hoc mechanisms
between individual units in the field.

Strategic network

Tactical network
 - Deployed

Tactical network
 - Mobile

Number of services

Dynamicity

FFI-rapport 2009/01934 13

Figure 2.3 Suggested service discovery mechanisms for each operational level.

2.2 Vertical integration

Units in the ad hoc layer are typically sensors and services that are mobile. They will primarily
need to interact with other services in the same geographical area, but services in other layers
should be available on demand. An example of a unit in this layer could be a soldier equipped
with simple sensors for localization to keep track of other team members or directions for the
current mission. These small ad hoc networks may have limited resources and should use
resource friendly discovery methods. Such methods could include cross-layer discovery. It is
important to note that on the lowest tactical level, e.g. within a squad, bandwidth may be less of a
problem because higher bandwidth WLAN technology can be used within a short range. The
main problem is often the reach back link, which can have a long range and correspondingly low
bandwidth.

Contact with upper layers could be offered as a service published by units equipped with the
necessary resources to perform the communication. This gateway service, if present, may be used
to send queries to a peer-to-peer layer or directly to a registry if available. Typically a query must
be sent to a registry if it contains complicated semantics or in some other way demands more
resources than the current node can provide. For example, a handheld device with limited CPU
and memory may not be able to process complicated semantics and perform service orchestration.
Other queries may be forwarded to the peer-to-peer-network as results in that layer may be
returned more quickly, due to possible value added functionality in that layer. Peers in the peer-
to-peer layer may also be delegated resource intensive parts of a query or take care of registry
communications before returning the result to the originating unit.

 14 FFI-rapport 2009/01934

Services in the ad hoc layer are published with a minimal set of descriptions, typically just being
based on predetermined identifiers or unique names. Searching will mostly consist of broadcasts
and/or multicasts with requests for a specific service. More advanced queries are sent to the upper
layers through a gateway service.

Above the ad hoc layer is the peer-to-peer layer. Typically units in this layer are larger, mobile
units that are able to carry more and heavier equipment than the units in the ad hoc layer, thus
allowing more resource intensive discovery techniques. Since the amount of resources may vary
in each unit, all units in this layer should be able to adapt to the level of available resources –
especially bandwidth limitations.

Searching in the peer-to-peer network will depend on resources available in the nodes performing
or responding to the search query. Simple semantic descriptions and template based searching
should be supported, but need not be used in every search. Due to the overhead of a full semantic
search, such metadata should only be used when necessary. Queries originating from units with
limited resources in the ad hoc layer will be simple and thus not incur as much overhead as a
semantic search. To save bandwidth it should be possible to use previous knowledge gained to
complement the queries before the actual search is performed – for instance information about
physical location, available resources and so on.

Service descriptions should always contain liveness information to enable caching of search
results. This allows peers to quickly return frequently requested service descriptions and limits
the bandwidth required for communication with the registries.
Units in the peer-to-peer layer should also be able to participate in the ad hoc layer. This enables
the peer-to-peer network to discover local services without the need of a registry. In addition,
some peers should be able to act as gateways for the ad hoc layer when possible. Peers providing
gateway services enable quick and potentially redundant access to the peer-to-peer network for ad
hoc layer nodes.

Units in the registry layer are stationary service registries and are typically located in local or
central headquarters. Communication is primarily based on land lines and high capacity radio
links, thus restricting their mobility. Their high bandwidth allows them to cooperate in federations
or make use of replication, making them less vulnerable to attacks. Search queries in the registry
layer may have any level of complexity supported by the registry, probably ranging from simple
templates to complex semantic searches. Some registries should be available as a peer in the peer-
to-peer layer and as a discoverable service in the ad hoc layer. As a peer, the registry may be able
to respond to queries without the need for subsequent connections directly to the registry, thus
saving bandwidth. In addition, the peer-to-peer network will allow registries to discover each
other. As an ad hoc service the registry can be discovered by passing units, for instance enabling
the peer-to-peer network to discover unknown registries when one of its peers is geographically
close to it.

FFI-rapport 2009/01934 15

2.3 Horizontal integration

In coalition forces today, the various nations have to circumvent their proprietary solutions in
order to collaborate. That means that even if they are collaborating in the field, their proprietary
radio systems cannot communicate with each other. In order to pass information from one nation
to the other, the information must be sent up from the tactical to the strategic level in the nation’s
network, and then passed through a so-called interoperability point (i.e. a gateway) to the other
nation’s network, before it is sent down again to that nation’s tactical level. This must be done
due to incompatibilities between the different communication waveforms and current policy.
Also, different national crypto modules make interoperability between radios from the same
vendor impossible. Thus, interoperability is currently achieved at the strategic level because
communication solutions at this level are based on Internet technology. This solution works, but
is less efficient than if the various networks could communicate directly. Direct communication
should be achievable in the future considering NATO’s current focus on waveform
standardization, which would allow interoperability points connecting two different national
solutions together using a gateway solution with a NATO waveform. Another way to achieve
such interoperability is by connecting different radios back to back. Interoperability is an
ambition in NEC, and would allow for service discovery between different nations across the
same operational level.

2.4 Web services standards

There are several challenges that arise when attempting to perform service discovery in
MANETs. Below we summarize some of the most important challenges as identified by [26]:

• Dynamic environments may lead to frequent change in both service metadata (service
descriptions) and the topology of the nodes that are part of the system. Frequent topology
change means that both service nodes and registry nodes can come and go.

• A proper service discovery architecture for such an environment would reduce the
amount of manual configuration, enable automatic discovery and selection of relevant
services, and offer a complete and up-to-date picture of the services available at the given
point in time.

• Service discovery should work in environments disconnected from the Internet.
Moreover, it should be robust in terms of partial failure.

• The system should allow flexible resource utilization, since capacity (memory, CPU,
storage) and connectivity can differ from node to node.

• The infrastructure should support different kinds of service description mechanisms,
ranging from simple to rich (i.e. semantic) descriptions. Thus, both normal Web services
as well as Semantic Web services should be able to use this infrastructure.

Considering these requirements, we look at each of the existing solutions for Web services in
turn: Currently, there are three OASIS standards related to service discovery for Web services.
The two registry standards, Universal Description, Discovery and Integration (UDDI) and
electronic business XML (ebXML), are for use in wide area networks or local area networks. In
order to find a service, the client needs to access the registry, search for an appropriate service,

 16 FFI-rapport 2009/01934

and choose a service from the query reply. However, this solution was developed for business
use over the Internet, where connections are fixed; have a high bandwidth, high uptime, and
nodes are immobile. In a MANET the network topology is unpredictable, and if the network is
partitioned then only clients in the same partition as the registry will be able to discover services,
whereas the clients in other partitions will not. This means that a client residing in the same
partition as the service it needs may be unable to use it, just because it cannot access the registry
to discover it. In contrast, a client that is able to access the registry may discover a service that it
is unable to connect to, since the service resides in another network partition. These two aspects
(shown in Figure 2.4 and Figure 2.5) are important drawbacks with registries if you attempt to use
them in a dynamic environment such as a MANET.

Web Services Dynamic Discovery (WS-Discovery) attempts to remedy the drawbacks of
registries. It is designed for use in local area networks and is based on multicasting queries and
responses. This means that by using WS-Discovery, you can discover services in your partition
and use them. There is no single point of failure in WS-Discovery, and the query responses
mirror the current network state. All three discovery mechanisms support simple service
descriptions. The registries have third party support for semantics as well. WS-Discovery in its
current form has no support for semantic descriptions at all, and is thus not suitable for discovery
of services beyond that provided by simple descriptions. WS-Discovery, being based on SOAP
over UDP, is quite verbose and thus requires the network to handle large messages. Since we lack
a standard that is suitable for use in disadvantaged grids,1

 we need to consider experimental
solutions.

1 A disadvantaged grid is characterized by low bandwidth, variable throughput, unreliable connectivity,
and energy constraints imposed by the wireless communications grid that links the nodes.

FFI-rapport 2009/01934 17

Figure 2.4 Partitioning of the network leaves
the server inaccessible.

Figure 2.5 Partitioning of the network leaves
the registry inaccessible.

3 Evaluation of service discovery mechanisms for tactical
mobile networks

Tactical networks can be divided into two types: Deployed tactical networks and mobile tactical
networks. The former are typically networks that are moved to some location, deployed, and then
being set up and used only when they are stationary. The forward deployed HQ falls in this
category. The latter are the MANETs, where movable units participate in a network that needs to
function both when the nodes are stationary and when they are moving. Typically, soldiers and
vehicles taking part in the network enabled battlefield fall in this category. In this chapter we
focus on the tactical networks (both deployed and mobile), and attempt to identify service
discovery mechanisms that are suitable for use there.

3.1 An overview of MANETs

A MANET is a collection of mobile nodes connected by wireless links able to dynamically form
an autonomous multi-hop radio network—without the use of any pre-existing infrastructure.
Intermediate nodes in a MANET can act as routers to forward packets on behalf of other nodes.
With their self-forming nature and their ability to cope with rapid changes of the topology, ad-hoc
networks are attractive to a variety of applications. However, it is worth noting that ad-hoc
networking introduces a great many challenges and imperatives, and also adopts the side effects
of wireless computing [4]. Wireless links are significantly less reliable than wired media, they

 18 FFI-rapport 2009/01934

have unpredictable signal quality and transmission range, the channel can be time-varying and
possible asymmetric, and the wireless links are vulnerable to security attacks not found in wired
networks. Further, the multi-hop nature in MANETs introduces challenges due to the topology
dynamics, heterogeneity, variations of node availability and power constraints. This puts tough
requirements to the chosen MANET routing protocol. The IETF MANET working group
considers mainly two routing approaches: Reactive routing such as the Ad-hoc On-demand
Distance Vector protocol (AODV) [5] and Proactive routing such as Optimized Link State
Routing Protocol (OLSR) [6].

3.1.1 Reactive routing

Protocols in this category are reactive in the sense that they attempt to discover routes between
nodes only on-demand. Reactive protocols are also named source initiated or on-demand routing
protocols. AODV is one of the most prominent protocols in this category.

3.1.2 Proactive routing

In contrast to reactive routing protocols, proactive routing protocols seek to maintain routes to all
nodes regardless of upper layer communication demands. By exchanging control messages
periodically, the routing table can be kept updated and fresh routes can be provided immediately.

Compared to reactive routing protocols, this approach yields more control message overhead, but
no initial delay to set up a route prior to communication. OLSR is one of the most prominent
protocols in this category. For example, it is being used as the routing protocol for the tactical
radio WM600 [7].

3.1.3 OLSR

The Optimized Link State Routing Protocol (OLSR) for MANET is a proactive, link-state routing
protocol where each node maintains topology information by periodically exchanging link state
messages. The novelty of OLSR is to employ multipoint relays (MPRs) to minimize the number
of control messages flooding in the network. Each node chooses a subset of its one-hop neighbors
as MPRs in such a way that these MPRs will cover all two-hop away neighbors. Hence, messages
are forwarded only by MPRs, and not by all nodes (see Figure 3.1).

FFI-rapport 2009/01934 19

Figure 3.1 Flooding in a multi-hop network. Flooding through multipoint relays (MPRs)
reduces the number of duplicate transmissions.

The core functionality of OLSR is: Packet format and forwarding; link sensing with hello
messages; neighbor detection; MPR selection and MPR signaling; topology control message
diffusion; route table computation; node configuration. Three control messages are defined to
provide this functionality:

1. HELLO messages are exchanged between neighbors only, and diffuse information about
the one-hop neighbors of a node. Upon reception of HELLO messages, the two hop
neighborhood is discovered, and further, the MPRs of the given node are chosen. The
MPRs chosen by a node is further marked in the following HELLO messages broadcast
by that node.

2. TC - Topology Control: In OLSR, all nodes chosen as MPRs will transmit TC
messages. The TC messages contain the address of the node generating the message, as
well as the list of nodes that has chosen the given node as MPR (MPR selectors). TC
messages are further flooded using the MPRs, disseminating link state information to all
the nodes in the OLSR network.

3. MID - Multiple Interface Declaration: The MID message is broadcast by nodes
running OLSR on more than one network interface.

In addition, a fourth message type, Host and Network Association (HNA) message disseminates
information about OLSR nodes that act as gateways (either to the Internet or to a separate
Ethernet).

Using a common header for all message types the OLSR standard provides extensibility of the
protocol without breaking backwards compatibility. This feature gives a unique possibility to
disseminate additional information through intermediate nodes even if the nodes do not support
the specific extension. Leveraging this knowledge made it possible to create an efficient cross-
layer discovery mechanism, see the discussion on Mercury below.

 20 FFI-rapport 2009/01934

3.2 Service discovery mechanisms

There are two main categories of service discovery mechanisms for MANETs:
1. Application level service discovery: Refers to protocols independent of the routing

protocol.
2. Cross-layer service discovery: Refers to protocols integrated with the routing protocol

(be it either reactive or proactive).

Most MANET service discovery proposals belong to the first category, and place service
discovery at a layer above routing (Figure 3.2 (a)). Such mechanisms create an overlay on top of
the network layer to disseminate service advertisements, requests and replies in the network.

Figure 3.2 Service discovery solutions for MANETs work either at the application layer or in a
cross-layer fashion.

There are several advantages using this method: (i) As no assumption is made about the
underlying network, it is possible to create pervasive service discovery architecture across
different networks domains. (ii) The architecture can be based on existing standards, since the
size of the service descriptors is not limited by the routing protocol. (iii) A modular and layered
approach is maintained making it possible to replace protocols at any layer.

Cross-layer service discovery is motivated by the need to optimize control overhead and reduce
the latency associated with finding services. As both the service process and the routing process
must coexist in an ad-hoc network—both processes generate and receive messages. It is therefore
possible to exploit the routing layer for efficient dissemination of service control messages
(Figure 3.2 (b)).

3.2.1 WS-Discovery

WS-Discovery [22] recently became a standard from the Organization for the Advancement of
Structured Information Standards (OASIS) after having been a proposed draft for several years.
WS-Discovery addresses the need for a service discovery mechanism for Web services that can

FFI-rapport 2009/01934 21

reflect the current state of the network in the absence of a registry, but that can co-exist with and
utilize a registry if it is present.

WS-Discovery is a fully decentralized solution which defines a multicast protocol using SOAP
over UDP [24] to locate services, a Web Services Description Language (WSDL) document2

3.2.1.1 Implementation

providing an interface for service discovery, and XML schemas for discovery messages. It allows
dynamic discovery of services in ad-hoc and managed networks, and enables discovery of
services by type and within scope. WS-Discovery leverages other Web service specifications for
secure, reliable message delivery. Inherently scalability is limited due to the use of multicast, but
WS-Discovery can scale to a large number of endpoints by defining a multicast suppression
behavior (i.e., switching from multicast to unicast communication) if a discovery proxy is
available in the network. The discovery proxy is intended to be a registry for Web services (e.g.
UDDI). When the discovery proxy is discovered, clients use a registry specific protocol to
communicate with it. Thus, WS-Discovery can be used to discover registries in a LAN, or
services in a local area if no registry is present.

Since WS-Discovery became a standard during the summer of 2009, there were no standard
compliant implementations available yet that we could evaluate. Thus, we chose to look at an
implementation of the draft specification [23] instead. We used a Java implementation of the
mandatory parts of the WS-Discovery draft, which is freely available from
http://code.google.com/p/java-ws-discovery/. Leading up to the CE experiments we were
corresponding with the author of this solution, supplying several bug reports. These bugs were
fixed, and the version we used at CE is the version later published as “v0.2.0 October 25th”.

3.2.1.2 Discussion

WS-Discovery is not suitable for Internet-scale discovery since it relies on multicast. It is
designed for use in local area networks only. That means that you can use it to discover services
and registries in a LAN, but not in a WAN (unless you have a discovery proxy in your LAN
which is used by WS-Discovery and that registry contains services on the WAN). WS-
Discovery, being based on SOAP over UDP, is quite verbose and thus requires the network to
handle large messages. Previously we have attempted to use WS-Discovery in a disadvantaged
grid, and found that it was not optimal for use there [25]. Therefore we have been researching
alternative solutions such as Search+, Mercury, and Service Advertisements in MANETs (SAM)
as solutions that can be used in such networks instead. However, considering that there are some
minor changes in the WS-Discovery specifications from the 2005 draft version to the 2009
standard, we plan to re-evaluate WS-Discovery in a new series of experiments as soon as a
reference implementation becomes available.

2 For an example WSDL document, and a discussion of its contents, please refer to Section 4.1.1.1.

http://code.google.com/p/java-ws-discovery/�

 22 FFI-rapport 2009/01934

3.2.2 Peer-to-peer based service discovery

We have experimented with a novel service discovery approach that we have named Search+
which uses peer-to-peer techniques. The solution is designed to conserve scarce network
resources in tactical networks.

The term peer-to-peer (P2P) is used to describe networks in which all nodes are treated equally.
All nodes are potentially capable of providing services and are also involved in data forwarding.
Commonly, a P2P network is created by forming what is usually called a P2P overlay on top of
an existing network. The P2P overlay network defines addressing and routing mechanisms and
enables nodes (peers) to exchange messages while hiding details of the underlying networks.
When a node within the P2P network fails, messages among the remaining nodes can still be
exchanged and services provided by the remaining nodes are still available. Thus, a P2P network
is highly robust, which is a desired feature in military systems.
Service discovery mechanisms that are currently available for SOAs are not ideal for use in
tactical environments. Existing solutions are based on a central registry being available for
providers and consumers, introducing a single point of failure. Thus, instead of (or as a
supplement to) a central registry a P2P based discovery mechanism would be a better choice. We
therefore propose to use a P2P based system to implement service discovery for SOAs in military
networks.

In a P2P based SOA each node can fulfill the role of producer, consumer and registry
simultaneously. A node can provide a specific service and be a client of services as well. Each
node maintains a local registry which contains information about the services provided by the
node. However, in most P2P networks the registry content of a node will grow over time as the
node learns about services that neighboring nodes provide. The exact learning procedure depends
on the P2P algorithms used.

If a consumer requires a specific service it sends a search request through the P2P overlay
network. Each node receiving this search request compares it with the information in its local
registry and sends a response to the requester when a match is found. After processing a search
request a node forwards this request to neighboring nodes. The exact forwarding behavior
depends on the chosen P2P overlay.

As no central registry exists, the single point of failure regarding service discovery is eliminated
in a P2P based SOA. Different P2P network types exist and it has to be decided which type is
suited to implement a P2P based SOA. In general, P2P networks can be classified as unstructured
or structured. The two types differ in the way the local registry on nodes is populated and how
search requests are routed in the overlay network.

In a structured P2P network specific nodes are used to store specific service information. A node
offering a service informs a dedicated node for this service type that the service is available.
Hence, each node knows where to direct a search request when looking for a particular service
type, which improves search accuracy and speed. The P2P network implements repair strategies

FFI-rapport 2009/01934 23

for situations in which a node holding particular registry information becomes unavailable.
However, we argue that structured P2P networks are not suitable for a military SOA as the
structured storage of registry information again introduces single points of failure. In fact, such
systems are similar to a federation of central registries as they are used in non-P2P SOAs.
In an unstructured P2P network nodes send search requests through the overlay network. A node
that has a match in its local registry will send a response. In the worst-case situation a search
request has to be broadcast to all nodes in the network before a match is found. However, nodes
can learn about services offered by neighboring nodes through observation of search response
messages. Hence, in a practical deployment worst-case search efforts are rarely required. In
addition, the unstructured network has no single failure point.

As the motivation to use P2P techniques in SOA is to increase reliability and to remove single
points of failure, an unstructured P2P network should be used. The most prominent example of a
protocol for unstructured P2P networks is Gnutella [14].

3.2.2.1 Search algorithms for P2P networks

In this section search algorithms for unstructured P2P networks are described and discussed. The
search algorithm is necessary to implement the registry functionality of the P2P based SOA.
First, we describe the simple but commonly used flooding search algorithm. We show that such a
simple algorithm is not useful for military networks as it is not designed to conserve bandwidth.
Second, we describe an existing search algorithm named Advertisement-based Search Algorithm
for Unstructured P2P Systems (ASAP) [15], which was designed to reduce bandwidth
consumption. Third, we describe our own search algorithm named Search+ which is inspired by
ASAP. Search+ is designed to further reduce the bandwidth consumption of the service discovery
process. The described flooding and ASAP algorithms are used in the evaluation for comparison
with our proposed Search+ algorithm.

3.2.2.2 Flooding

The flooding algorithm can be considered the most basic search algorithm in P2P overlays. When
a node performs a search it will send the search criteria to each of its neighbors together with a
time-to-live (TTL) value. The neighbors will decrease the TTL value and forward the message to
their neighbors, continuing this process until the TTL value reaches 0. Each node that has a
service that matches the query will send a reply back to the node that performed the search.

The flooding algorithm is simple to implement and has low processing overhead. However, there
is a chance that a service is not found even if present. If a node providing the service cannot be
reached due to set TTL value a service discovery might fail. In addition, flooding consumes a
large amount of bandwidth which is not desirable in a tactical network. Obviously, the TTL value
can be used to balance search accuracy (discovery success rate) and bandwidth consumption.
However, even TTL restricted flooding becomes too bandwidth intensive if a reasonable accuracy
is to be achieved.

 24 FFI-rapport 2009/01934

3.2.2.3 ASAP

ASAP is an algorithm specifically developed to reduce bandwidth consumption and improve
search accuracy in unstructured P2P networks. The algorithm is proactive, meaning that instead
of waiting for search queries to arrive and then respond to them, the nodes in the P2P network
will actively exchange indexes with information relevant to their interests. The basis for the
ASAP algorithm is four observations made by the authors about file-sharing P2P-networks on the
Internet:

1. Large parts of the traffic in file-sharing P2P networks consist of search queries.
2. The rate at which queries are performed tends to fluctuate with usage patterns.
3. Content shared on many nodes does not change very often, if ever. Also, downloaders

(i.e. clients) do not usually further share the documents downloaded from other peers.
4. Interest clustering is common in file-sharing P2P systems.

We argue that these observations also hold for service discovery in tactical networks. The first
point is generally valid for unstructured P2P networks, be it in a tactical network or elsewhere.
The second point would correspond with the need to find and use services, and this need would
obviously not be constant, but rather fluctuate with the needs of the execution of the current
military operation. The third point is also valid, because a service being provided would most
likely continue to be available unless something were to happen to the node (e.g. incapacitation or
loss of network connectivity), and services would only be consumed by the clients and not shared
(i.e. re-published) by them due to the nature of Web services, where nodes are either a consumer
or a producer but usually not both. Finally, the fourth point is a trait that can also be anticipated in
tactical networks, where different units have different roles in an operation, and depending on the
role, the unit will need to consume different information services. Thus, in an operation, units in
an area having similar needs will need to access the same set of services, leading to interest
clustering.

When a node looks up a service, the node will first inspect its local registry. The local registry
contains a list of service descriptions and node addresses indicating where specific services are
located. Each service description is stored as a Bloom filter [8] which is a dense representation of
a service (a set of bits representing hash values of the service descriptor). When a match is found,
the node will know with a certain probability where the service is located. Since this probability
never reaches 100%, a message asking for confirmation needs to be sent directly to the node
providing the service. If the node acknowledges the match, the search is considered successful. If
no match is found, the node will advertise its need for a registry update to all its neighbors. Over
time, a node builds up a local registry that is able to answer a nodes service discovery requests.

The nodes in the overlay synchronize their registries by sending registry updates whenever their
own registry, i.e. the Bloom filters change. These updates are generally very small, consisting
only of a few bytes per filter. ASAP has no single point of failure as registry content is
propagated through the network. In addition, it has low bandwidth requirements. This suggests
that ASAP is suitable for use in tactical networks. We have implemented ASAP within a P2P
network and have performed numerous tests which show that ASAP is indeed very bandwidth

FFI-rapport 2009/01934 25

efficient compared to basic solutions such as flooding. However, there is still room for further
improvement of the search technique, and in the following section we introduce our own Search+
algorithm which can achieve a bandwidth to hit ratio that is even better than that of ASAP.

3.2.2.4 Search+

Search+ follows many of the same principles as ASAP, in that it uses advertisements with Bloom
filters and a similar search and confirmation mechanism. The idea in Search+ is that each node
will subscribe to advertisements that match their interests.
Advertisements in Search+ contain a Bloom filter, a node identifier and a version number. This is
identical to the full advertisements used in ASAP, and contains the following fields:

• A Node ID, which is a unique identifier for the node that created the advertisement.
• The Bloom filter, which contains a bit pattern used to match keywords against the content

held by the producer.
• A list of Topics covered by the content in the Bloom filter.
• A Version number that is incremented for each change to the topics or Bloom filter fields.

 Join: When a new node joins the network, its task is to inform the neighboring nodes of the
topics (types of services) the new node is generally interested in. To perform the Join operation a
subscription message is sent. The TTL value in this message determines how far into the network
the subscription request is forwarded. Note that Search+ does not send service advertisements at
this point.

Maintenance: The maintenance process in Search+ has two main functions; to process newly
arrived subscription requests and to publish service advertisements. Each new request is
processed and the specified interest is stored in a table. Each node will remember the interests
specified by each of its neighboring nodes.

Note that new subscription request messages are only sent when nodes join or when a node’s
interests change. The request message always contains the topics (service types) the node itself is
interested in and the interests specified by its neighbors. When a node receives a subscription
request message with TTL greater than 0 it adds its own interests and its other neighbors’
interests to the message before forwarding it.
New advertisements are published by stepping through the list of neighbors and checking for
cached advertisements matching one or more of their interests. After retrieving all the relevant
advertisements for node N, those that have already been sent are removed from the set. The result
is then sent to N and subsequently added to the list of advertisements that N has received.

 Search: In the search process, the local advertisement cache is first processed for Bloom filters
matching the search terms (the service description). For each match that is found a confirmation
request is sent to the node possibly hosting the service. If this fails the search ends as there is no
fallback method that could provide more search results. The only option in such case would be to
send a subscription message with a higher TTL. However, such measures should only be taken if

 26 FFI-rapport 2009/01934

deemed absolutely necessary as this action has the potential to trigger substantial amounts of
traffic.

Note that this behavior distinguishes Search+ from ASAP which requests new advertisements
from neighbors as a fall back mechanism. In the ASAP algorithm this action gradually transports
advertisements towards the interested nodes. In the Search+ algorithm however, this process takes
place when advertisement subscriptions are sent during the join process.

3.2.2.5 Implementation and evaluation

To evaluate the proposed Search+ protocol we implemented a P2P overlay. We used the Juno
[16] framework to implement the software for the P2P nodes. Juno is a reconfigurable
middleware for heterogeneous content networking which simplifies the implementation of P2P
overlay networks.

As P2P network protocol we selected Gnutella [14]. The Gnutella protocol defines a basic set of
message types that can be used to create and maintain a P2P overlay. Standard Gnutella
implements a simple flooding algorithm as search algorithm. We also implemented ASAP and
Search+ as alternative search algorithms for our Gnutella P2P overlay. Thus, we are able to
compare the performance of the three search algorithms: flooding, ASAP and Search+.
In particular, we were interested in seeing if Search+ could improve the search hit rate while
reducing bandwidth consumption.

3.2.2.6 Evaluation setup

For evaluation we used a P2P network with 100 nodes offering 400 unique services. In the
following paragraphs we describe in detail the network configuration. For further details about
the experiment, see [20].

Services and Topics: Each node is sharing a number of services identified by a service name. For
the experiment we generated 400 unique services grouped into 14 topics. Each service is
associated with one topic; services are equally distributed over the available topics. Each node in
the overlay provides four unique services. Using a high number of unique services during
evaluation stresses the network and the search algorithms. A low number of services would yield
lower bandwidth consumption during evaluation, since less information needs to be propagated.
Thus, we chose a high number of unique services to ensure that the results are significant. We set
nodes to be interested in the same topics as they offer services in. This choice is based on
assumption 4 above; that nodes are more likely to request services within the categories that they
are offering.

Bloom Filter: When using the ASAP and Search+ algorithms, the Bloom filter size affects both,
the query success rate and the bandwidth consumption. A larger filter increases the success rate,
while requiring more bandwidth. We have chosen to have four unique services per node, but in a
real life scenario we expect that a few nodes will have significantly more services than others. We
also expect that each node may use more than one keyword to describe a service. If we assume

FFI-rapport 2009/01934 27

that each node on average will use four keywords to describe a service, and that the node with the
most services has 25 services, the Bloom filter should be able to hold 100 keywords for each peer.
The filter size of 1000 bit selected for the experiment achieves this goal and results in a
probability of a false positive of 0.00819 which we deem to be acceptable. See Appendix B for
further details.

Service Discovery: Due to the previously mentioned interest clustering, nodes are assumed to
search for services relevant to their interests. Thus, in our evaluation the nodes are configured to
search for services that fall within the same categories as they are interested in with a probability
of 0.9. In other words, 90% of the queries from each node will be for services that have one of the
same topics as the node’s own interest. The remaining 10% are chosen randomly.

Network Topology: We expect a tactical network to follow the principle of preferential
attachment, where connecting nodes will have a higher probability of connecting to nodes that
already have many connections.

In a military network, it is also likely that the nodes will form hierarchical clusters, due to the
command structure [17]. Based on these two arguments, we argue that a real life topology form a
scale free network with a power law distribution, as described by Barabasi and Alberts in [18]. In
such networks, most of the network nodes can be reached in few hops, but complete message
dissemination may require a high TTL, as we discuss below. The topology used in the
experiments is a 100 node Barabasi-Albert with an average degree of 3.94.

Time-To-Live (TTL): The TTL affects different mechanisms in each algorithm. In Gnutella, the
TTL determines how far the flooded query will travel before being discarded. In ASAP, the TTL
specifies how far the advertisements are sent. In Search+, the TTL is the number of hops the
initial subscription request is forwarded. Due to these differences, the TTL must be chosen
independently for each algorithm.

In [19], Portmann et al show that in a power law distributed Gnutella network a TTL of 5 reaches
more than 95% of the network. The topology used in our experiments also exhibits power law
properties, and we have therefore chosen to use TTL = 5 when using the flooding search
algorithm (standard Gnutella search). The initial TTL value for ASAP is chosen based on the
results in [15], where they achieve optimal results with a TTL of 6. Search+’s TTL value
specifies how far the subscription requests are sent, but after a while the paths that advertisements
follow in the overlay may be much longer than this value. We therefore choose the low TTL
value of 3.

To examine how the TTL affects the accuracy and bandwidth use, we repeat our experiments
with a decreased TTL value for each algorithm.

 28 FFI-rapport 2009/01934

3.2.2.7 Evaluation

To make it easier to examine the results, the execution is separated into three phases;
initialization, stabilization and query. Each phase lasts for a known time interval.
During the initialization phase, the nodes are given 30 seconds to start up, configure themselves
and read the topology from a file. After waiting the specified time interval, the peers connect to
each other according to the read topology. The overlay is then given 180 seconds in the
stabilization phase. After stabilizing, the nodes enter the query phase, and start sending search
queries at regular intervals with an added random waiting period. This phase lasts until the
experiment ends.

The peers perform a search every 20 seconds, with up to 5 seconds random variation. As a result,
the delay between queries varies between 20 and 24 seconds. When entering the query phase, all
peers send their first query at the same time. This causes traffic bursts during the first parts of the
experiments. After a while, the variation in delay between the queries leads to less traffic bursts,
as the queries are distributed more evenly over time between the peers. This gradual change in
traffic pattern allows us to see how the algorithms respond during high load, how quickly they
recover and how well they function when queries are more evenly distributed.

With an average delay of 22 seconds, each node sends 2.72 queries per minute. For a 100 node
overlay, this corresponds to 4.53 queries per second.

Algorithm Success rate Response time
Search+, TTL=2 0.929 3.74
Search+, TTL=3 0.974 3.10

ASAP, TTL=5 0.864 2.65
ASAP, TTL=6 0.886 2.57

Flooding, TTL=4 0.823 279.51
Flooding, TTL=5 0.964 230.05

Table 3.1 Success rates and average response times in milliseconds.

Table 3.1 shows the average response times for each algorithm. As is expected, when flooding is
used, query times are longest. This is caused by Gnutella nodes having to wait for both the query
and the response to be routed through the overlay before a match is found.

In Search+ and ASAP, a confirmation message can be sent directly. Flooding with TTL = 4 has
longer response times than with TTL = 5. This is caused by long queues building up in the central
nodes during the initial burst of traffic. With TTL = 5, more messages are routed around the
central nodes than with TTL = 4, thus leading to shorter response times.

ASAP with TTL = 5 and TTL = 6 have the shortest response times, with 2.65 ms and 2.57 ms.
Search+ is a bit slower at 3.10 ms and 3.74 ms, due to the extra calculations required in each
node. Still, the result is well below results achieved using flooding.

FFI-rapport 2009/01934 29

Table 3.1 also shows the ratio of successful queries. A success rate of 1 means that of all the
query responses received, at least one matches the query. As expected, flooding reaches more or
less the whole overlay with TTL = 5, and has a high success rate. Search+ with TTL = 3 has the
highest success rate with 0.974. ASAP on the other hand, does not quite reach up to the other two,
and ends up with a success rate below 90%. Our results with ASAP differ from the results found
in the simulation conducted by the authors of [15], where ASAP seems to consistently reach
values around 0.95. This can in part be explained by two differences in our setup:

First, in [15] advertisements are distributed with 90% of nodes already connected. This means
that the initial advertisement sent when joining the overlay can reach a very high percentage of
the nodes, as observed in [19]. This could mean that the success rate of ASAP is largely
determined by the initial distribution of advertisements and that the effect of the request message
that is supposed to drive advertisements toward interested nodes is negligible. In our experiments
we use TTL = 1 for the request message, as recommended in [15], but increasing this value may
yield better results. We did not do this in our experiments, mainly because of the additional
bandwidth requirements. As we will see later, ASAP already requires the same bandwidth as
Search+. The authors of ASAP mention that they performed their experiments after an initial
“warm up period”, but they do not say how long this period is. We repeated our experiment for 10
hours, but ASAP still did not achieve more than 90% search accuracy. To further increase the
success rate, ASAP would probably have to improve its advertisement distribution; either by
distributing the advertisements more effectively when joining the network, or by requesting
advertisements from more than the immediate neighbors. Either way, ASAP relies on nodes
continuing to send queries, as this is what triggers the distribution process.

Second, when simulated in [15], ASAP yields the best results in an actual topology from the
eDonkey file sharing network. This topology has 1.28 copies of each document (or service in this
context) on average. This would increase the perceived search accuracy, as multiple copies of a
document increase the probability of finding one of them. The experiment described in this paper
has only one copy of each service.

Algorithm Advertisement distribution Average search bandwidth
Search+, TTL 2 23708.67 6385.75
Search+, TTL 3 38763.20 6701.19

ASAP, TTL 5 32406.17 15124.16
ASAP, TTL 6 37375.05 16217.28

Flooding, TTL 4 — 1232089.2
Flooding, TTL 5 — 939114.53

Table 3.2 Average bandwidth consumed (in Kilobytes) measured at the network layer.

Table 3.2 shows the average bandwidth used by each algorithm during our experiment. The
results are separated in advertisement distribution (three minutes) and actual search (30 minutes,
4.53 queries per second).

 30 FFI-rapport 2009/01934

As expected, Gnutella with a flooding algorithm requires most bandwidth, with 1.2GB for TTL =
5. This gives a good query success rate, as we saw earlier, but the amount of traffic will quickly
saturate slow links. Both ASAP and Search+ require considerably less bandwidth.

Algorithm Distribution
bandwidth

Search bandwidth Success rate

Search+, TTL 3 387.63 67.01 0.974
ASAP, TTL 6 373.75 151.24 0.886

Table 3.3 Comparison between ASAP and Search+. Bandwidth is average per node (in
Kilobytes).

In Table 3.3, ASAP and Search+ are compared using the TTL values that give the best search
accuracy. The bandwidth is shown as average per node in kilobytes. We can see that although
Search+ uses slightly more bandwidth during advertisement distribution, the bandwidth used for
queries with Search+ is less than half of the bandwidth used by ASAP. This is caused by ASAP
continuing to request new advertisements when queries fail. Search+ will only send new
advertisements when there have been changes in the overlay, i.e. when new content is published.
When comparing the results in Table 3.1 and Table 3.2, we can see that even if we increase the
TTL in ASAP, neither consumed bandwidth nor success rate increases significantly. This is
probably caused by ASAP relying on distributing advertisements during join, and that even with
an increased TTL, the advertisements are not distributed to enough nodes. The bandwidth spent
on advertisement distribution directly affects the search accuracy. We therefore expect ASAP to
use more bandwidth if the distribution mechanism is improved to increase the success ratio.
Search+ has a more aggressive advertisement distribution scheme, which will aggregate
advertisements in the overlay and transfer them to new nodes when they start subscribing to
topics from their neighbors. Thus, nodes only receive advertisements they have requested. As a
consequence, Search+ consumes less bandwidth, while still achieving a success rate of 97.4%.
The bandwidth requirements of Search+ can be further reduced by more than 40% with TTL = 2,
if we accept a success rate of 92%, which is still higher than we achieved with ASAP. Search+
does however require more processing power at each node.

3.2.2.8 Discussion

Search+ is more bandwidth efficient than the existing solutions that we have evaluated. In our
experiments, Search+ with TTL = 3 gave the highest accuracy and the lowest bandwidth
consumption of the alternatives. The average bandwidth consumed by Search+ is 387.63
Kilobytes per node during advertisement distribution and 67.01 Kilobytes during search. This
corresponds to 17.22 Kbit/s and 0.3 Kbit/s, respectively. The advertisements were exchanged
during a period of three minutes. This period could be increased to support lower bandwidths.
This shows that it is theoretically possible to use Search+ for service discovery in a disadvantaged
grid.

Also, since Search+ runs on top of unstructured rather than a structured P2P protocols we get a
solution that is robust and resilient towards attacks and partial failure. The main drawback is that
it is, as its other P2P counterparts, based on keyword hashing, which limits the expressiveness of

FFI-rapport 2009/01934 31

the search queries. Thus, coupling the solution with a registry service would therefore be required
to allow more advanced queries to be executed when needed.

For further details regarding the Search+ design and the experiments we performed, see [20].
More experiments are needed using actual tactical communications hardware before any definite
conclusion regarding the suitability of this solution can be drawn. The Search+ implementation is
currently being refined and updated with such experiments in mind.

3.2.3 Mercury

To successfully create service discovery for bandwidth-constrained environments, we envision
several combined optimizations. For this purpose, we propose a new service discovery solution,
Mercury. Mercury describes the service descriptors efficiently as Bloom filters, performs service
dissemination by piggybacking service information on OLSR routing messages and utilizes
caching of service advertisements.

Figure 3.3 Mercury connects users and applications to services in the Ad hoc network using
service advertisements and service requests.

Mercury handles requests and advertisements from two entities: (1) Local applications on the
node and (2) foreign nodes through the ad hoc network (see Figure 3.3). Each node uses a set of
repositories to store the information (see Figure 3.4): Advertised services contain the different
services offered by the node itself. The services persist in this list until an upper layer application
withdraws the service. Advertisements are sent both when a service is first registered and upon an
external request. All the service descriptors in this list are included in advertisements encoded as
one single Bloom Filter. In Foreign services cache, all the services offered by other nodes are
stored. Each entry in the list consists of the Bloom Filter advertised by the foreign node and its
current IP address. The last repository contains the Requested services which stores all the
services requested—awaiting an incoming advertisement.

 32 FFI-rapport 2009/01934

Figure 3.4 A Mobile Ad hoc Network consisting of three nodes. Each node use three hash
functions to create the Bloom filter and employs two repositories: One repository
stores the local services advertised, and one repository – implemented as an
attenuated Bloom filter of depth d – serves as a cache storing advertisements
received from foreign nodes.

All incoming advertisements are immediately stored in the cache. Upon a request from an upper
layer application, the cache is first requested. If an entry is found, the application is immediately
notified. Otherwise, a service request is sent.

3.2.3.1 Protocol format

OLSR communicates using a unified packet format for all data [6]. Using this format the OLSR
standard provides extensibility of the protocol without breaking backwards compatibility. This
feature gives a unique possibility to disseminate different kinds of information through
intermediate nodes even if the nodes do not support the specific extension. We take advantage of
the extensibility feature of the OLSR format, and introduce a new message, namely the Mercury
service discovery message (MSD). MSD messages are sent as the data-portion of the general
message format with the message type set to MSD MESSAGE. The MSD message with the
OLSR header has the format specified in Figure 3.5. The Mercury part consists of four fields
including a Spare field for future use. The Type field indicates whether the message is a service
request or a service reply. The Service Filter field contains the filter describing the services to be
requested or advertised encoded as a Bloom filter (described subsequently). The Filter Length
gives the size of the filter.

FFI-rapport 2009/01934 33

Figure 3.5 Mercury service discovery message format.

3.2.3.2 Distributing service descriptors

Many service discovery protocols use XML to describe the service information, such as in [9].
However, XML requires considerable bandwidth, which is sparse in ad hoc networks. An
alternative is to map a predefined set of keywords, or service descriptors, to integers to save
bandwidth as proposed in [10]. This solution indeed saves bandwidth. However, it is not very
flexible nor is it scalable, as it requires maintenance on every node in the network when new
service categories are added. The proposed solution in this paper is therefore to distribute a
summary of the available services as a vector described as a Bloom filter [8]. A Bloom filter is a
data structure that allows data representation in a simple and space-efficient manner. The filter is
created by hashing service descriptors to a size defined bit array. The size limitation may cause
the filter to indicate that a service descriptor is in the filter even though it is not—referred to as a
false positive. The implementation of the Bloom filter is hence a tradeoff between the size of the
filter and the probability of a false positive request to the filter.

In Mercury the filter is created using the message digest function MD5 [11]. MD5 is a
cryptographic hash function that hashes arbitrary length strings to 128 bits. A set of k hash
functions can then be constructed from k groups of r bits each out of the 128 bit hash. An
example usage of Bloom filter based service discovery is shown in Figure 3.4. Each node
advertises two services and employs three hash functions to describe the services. After
performing service requests, the descriptors are stored in the local cache of the other nodes. The
cache consists of one Bloom filter for each of the cached nodes (i.e. attenuated Bloom filter).

 34 FFI-rapport 2009/01934

3.2.3.3 Caching

Caching is employed to save network bandwidth. Caching may however, lead to false positive
replies to the overlying application if the advertised service exists in cache even if the node with
the advertised service is — due to network clustering — not available anymore. The cache
cleanup timeout is therefore a tradeoff between fast service queries and the false positive rate. To
reduce the amount of false replies to the application, we propose a path-aware approach that
consults the local routing table for the availability of the nodes in the cache. If a service exists in
the cache even if the node is not available, Mercury removes the cache entry and performs a new
service discovery in order to find relevant nodes offering a similar service.

3.2.3.4 Implementation and use

The Mercury SD proposal is implemented as an extension to the UniK OLSR implementation
(olsrd) [12]. Olsrd supports the loading of dynamically loaded libraries for auxiliary functions
using a generic plug-in interface [13]. Here, the Mercury plug-in is briefly described and example
usage is given. The code is available at “http://olsr-mercury.sourceforge.net/” for further
reference. In order to allow communication between the plug-in and user applications, a simple
Inter-process communication (IPC) function is enabled via TCP/IP. Using IPC, services are
requested, advertised, and withdrawn using a set of simple commands. By using Mercury and by
adding only a few code lines, any distributed application can be extended to facilitate service
discovery—regardless of programming language.

3.2.3.5 Discussion

Mercury utilizes the default forwarding algorithm in the OLSR routing protocol to disseminate
service discovery control messages. This algorithm allows the messages to be forwarded using
MPR flooding. When a node sends a control message, the opportunity to piggyback on other
messages such as HELLO and TC may be performed to reduce the number of packet
transmissions. Mercury takes advantage of caching to reduce unnecessary service requests, and
utilizes an optimized way to describe services using Bloom filters. This is a highly optimized
protocol, requiring few network resources to disseminate information about available services.
Using Bloom filters is very space efficient, but drawbacks are limited expressiveness and the lack
of wildcard searches. There is no Web services metadata, since you can search for whole
keywords only. For further details about the Mercury protocol, please refer to [21].

Cross-layer approaches demand proprietary solutions and modifications of existing standards, as
well as being of limited use if military IPSec solutions are present. These drawbacks have limited
cross-layer service discovery from becoming widespread so far, and might limit its usability in a
NEC setting. However, cross-layer solutions have low overhead and should thus be investigated
for use in military tactical networks where bandwidth is the limiting factor. Application level
solutions may also be feasible at this level, since it is possible to reduce the overhead of Web
Services significantly by employing XML compression [2]. If one is capable of utilizing an
application level solution then that could be preferable, since architecture violations can have a
detrimental impact on system longevity, as has been argued for the case of cross-layer design in

FFI-rapport 2009/01934 35

[3]. Based on these observations we have created SAM, which is discussed in the following
section.

3.2.4 SAM

As we have seen earlier, we lack a suitable Web services standard for use in tactical mobile
networks. Ideally, we want to be able to discover Web services in such networks, i.e., employ a
mechanism that has richer service descriptions than the ones we discussed above. We have
implemented the necessary functionality in an experimental solution which performs distribution
of Service Advertisements in MANETs (SAM).

We chose a set of techniques that are well suited for overcoming the service discovery challenges
in small, highly mobile networks [36]:

• Decentralized operation to overcome availability issues,
• periodic service advertisements to ensure an up to date view of available services, and
• caching to reduce resource use (no need to query the network).

Further, we introduce piggybacking of NFFI position information to reduce the number of data
packets, and compression to reduce the size of the data packets. The Position Data Type (PDT)
from NFFI is incorporated in the service discovery mechanism. By distributing the PDT at
regular intervals together with service information, the units can know where other friendly units
are, and also the services they provide. We implement all these techniques in SAM.

3.2.4.1 Observations and system design

The idea of combining service discovery with blue force tracking is based on the following
observations:

• You need to know where your mobile units (e.g. squad members) are, thus there is a need
to exchange position data.

• You need to know which services are available where and when, thus there is a need to
exchange service data.

• Previously, cross-layer solutions have been suggested for service discovery (e.g.
Mercury), but cross-layer solutions violate layered design and are problematic if you
want to use IPSec [28]. Therefore, an application level service discovery solution is
preferable.

• In some cases it is beneficial not only to discover a service, but also the position of the
service. For example, this could be the case if the output of the service is linked to the
position of the unit (sensor area coverage, etc).

• Supporting service discovery in the tactical battlefield is a major challenge.
• Since there is a need to send NFFI information at the application layer anyway, we might

as well piggyback service information in the notification messages. This gives the
benefit of getting the unit position and all active services at the unit in each update.

The information about the currently active services at each unit is described by a WSDL, which is
the standardized way to describe Web services. The WSDL contains enough information about a

 36 FFI-rapport 2009/01934

service not only to invoke it, but also to implement a client to the service. In an operation, this
latter function is not important, since each unit will already have the software it needs to fulfill its
role. Thus, it is the so-called endpoint of the WSDL, i.e. the invocation address of the service that
is of interest in an operation. The software needs this endpoint in order to address and invoke the
service properly. Since Web services are based on WSDLs, we need to address a few technical
issues:

• WSDLs are large. They contain a lot of static information, and some potentially dynamic
information. We separate the two, since the endpoint is our main concern.

• The service discovery mechanism should exchange something more compact than the
WSDL, since tactical networks have data-rate constraints.

o Can we distribute a compressed entire WSDL document?

 The entire WSDL is needed if you want to create new client software for
previously unknown services. However, the entire WSDL is not needed
at the tactical level, because new clients will not need to be implemented
on-the-fly. Units will come with pre-loaded software. The problem here
is identifying and invoking known services.

o Can we use a hash of the WSDL document?

 A hash will uniquely identify an already known WSDL, and since a
WSDL defines a service, it can be used to uniquely identify a service
type.

The proposed solution uses a hash over a WSDL with the endpoint removed. Since the endpoint
can change, it cannot be a part of the hash. The remainder of the WSDL, on the other hand, is
static and identifies the interface of the service. The service discovery mechanism disseminates
the hash together with the current endpoint to uniquely identify a service and its invocation
address.

3.2.4.2 Implementation

Our experimental service distribution mechanism is tailored to the specific requirements for
service discovery in MANETs. It can function disconnected from the Internet since it hosts all
the necessary data and metadata in a local repository. It is resilient to partial failure since it is a
fully decentralized solution. Thus, it will still function if the network becomes partitioned – the
clients in each partition will have a fully operational service discovery mechanism at hand. The
mechanism is based on periodic dissemination of service advertisements, and the advertisements
are cached locally in each recipient. Whenever a new update is received the cache is refreshed,
and any outdated services are removed. There is a limited time each service can exist in the cache
before it is deleted, thus ensuring that a query in the local cache will give an up-to-date picture of
the available services. An advertisement contains a list of services being provided by the node
that sent the advertisement. This list contains entries uniquely identifying the service, and any
metadata associated with the service. If the node chooses to report its position (i.e. if it is fitted

FFI-rapport 2009/01934 37

with a GPS), then the positional data (e.g. latitude and longitude) is sent along with the list of
services.

Basically, an advertisement contains the following XML-encoded data:

• A PDT position from NFFI (optional)

• A list of services, containing one or more of the following entries:

o Unique service hash ID (required), endpoint URL (required), metadata (optional)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ns2:ServiceDiscovery xmlns:ns2="urn:no:ffi:servicead" xmlns="urn:nato:fft:protocols:nffi13">
 <ns2:position>
 <trackSource>
 <sourceSystem>
 <country>NOR</ country>
 <system>FFI</ system>
 </ sourceSystem>
 <transponderId>BASE1</ transponderId>
 </ trackSource>
 <dateTime>20091116094916</ dateTime>
 <coordinates>
 <latitude>53.3618627551</ latitude>
 <longitude>6.26719155956</ longitude>
 </ coordinates>
 </ ns2:position>
 <ns2:service hash="E67AE486E32BB2FB2F551BD14EC57D56D258AD3C"
address="http:/ / 192.168.3.3:8080/ SamNffiWebService/ SIP3_Service_ReqRes"/ >
 <ns2:service hash="7E0119A31D7244A51C939A46A685271BC82944F2"
address="http:/ / 192.168.3.3:8080/ PingWS/ PingService"/ >
</ ns2:ServiceDiscovery>

Figure 3.6 An example advertisement using the mandatory fields and the optional position field.

The endpoint URL is the invocation address of the service being identified by the Unique service
ID at that particular node. In other words, this is the endpoint address as it can be found in the
service definition of the WSDL. This URL is the only dynamic aspect of a Web service
description, as the rest of the WSDL can remain static from deployment to deployment. Based on
this observation, we found that by removing the endpoint URL from the WSDL, we would get a
WSDL which could uniquely describe all services of the type defined therein. A WSDL is a large
XML document. To reduce the bandwidth requirements of the advertisement distribution
mechanism, we chose to use a SHA-1 hash3

3 It should be noted that the SHA-1 hash is taken over the entire WSDL (minus service endpoint), and this
hash is distributed directly in the service advertisements. This is in contrast to the Search+ and Mercury
solutions, where hashes are used to create a Bloom filter. Bloom filters may have false positives, whereas
the SAM mechanism will have no false positives from the way the hash is employed. However, a Bloom
filter is a more compact way of representing a lot of keywords, and will thus scale to a larger number of
services that need to be expressed. Conversely, a Bloom filter is less expressive than hashing the way SAM
does, thus making Bloom filter based discovery mechanisms less suitable for Web services discovery.

 over the WSDL without endpoint to uniquely
identify a service. Metadata associated with the service is optional. It can be used to disseminate
additional information which is needed for semantic service discovery. The metadata field is thus

 38 FFI-rapport 2009/01934

a flexible measure provided by the solution, in that it can be used by regular Web services for
discovery (i.e. just ignore the field) or by semantic Web services for added value and reasoning
capabilities. Figure 3.6 shows an example with the mandatory fields of the advertisement being
used, as well as the optional position. This is how SAM was used at Combined Endeavor 2009.
SAM uses compression to reduce the message size. Currently ZLIB compression is being used.
A major issue in dynamic networks is service liveness, i.e. if a service has disappeared from the
network due to some unforeseen circumstance (e.g. network partitioning, node failure, etc.) the
service should no longer be available from the SDS either. Using a registry requires the service
to actively de-register by removing itself from the registry. This is one of the main reasons why
current Web services solutions are inadequate in MANETs. SAM addresses the liveness issue
through caching in the following way:

• Two caches are maintained: A local cache (i.e. a cache of the services published, that is,
being provided by this particular unit), and a remote cache (i.e. a cache of services that
have been discovered through advertisements sent by other units).

• Updates are sent at regular intervals (this is configurable; during development an interval
of 30 seconds is being used). The update is sent in the form of a service advertisement as
described above. The list of services in the advertisement is the set of services contained
in the local cache.

• Upon receiving an update over the network, the remote cache is updated with the services
from the advertisement. The services in the remote cache time out if they are not
refreshed through new advertisements. The timeout is configurable, but in the prototype
the value is set to two times the advertisement interval, so that the service is deleted from
the cache the second time the service misses its advertisement slot. This achieves the
desired liveness, in that liveness is defined by the lack of advertisements, rather than
requiring the service provider to actively de-register its services. This solution is
preferable in a dynamic environment.

Communication in a disadvantageous environment such as a tactical MANET requires an
efficient service discovery solution. The proposed solution is resource efficient in that querying
for services is always done locally: A lookup in the local cache is all that is needed to get the
current state of the network, and no network packets need to be sent to fulfill the request. Also,
the advertisements are made as small as possible before transmission by using compression.

3.2.4.3 Evaluation

SAM was designed to be an alternative to WS-Discovery which can be used in tactical networks.
Compared to WS-Discovery (we used the draft version of WS-Discovery in our evaluation, since
a standard-compliant implementation was not available at the time) SAM is more bandwidth
efficient:

WS-Discovery sends “hello” messages during startup. For four web services, this generates 16
packets, i.e. four hello messages per service (the payloads are 1008, 983, 1074, and 1017 bytes
respectively). Searching for services involves sending “probe” messages. For each search, four
probes are sent (4x 597 bytes payload). WS-Discovery enabled nodes with services then reply by

FFI-rapport 2009/01934 39

sending “probe match” messages. In our case one node has four services, resulting in two probe
match message (2x: fragmented packets, payload total 2506 bytes). This is not resource efficient
in a disadvantaged grid where bandwidth and buffer space limitations come into play.

SAM, on the other hand, sends periodic broadcasts every 30 seconds (this is configurable):

• Four web services and position information
o Uncompressed: 1122 bytes payload
o Compressed: 728 bytes payload

• Just the four web services
o Uncompressed: 681 bytes payload
o Compressed: 516 bytes payload

Thus, we see that SAM is more resource efficient than WS-Discovery.

3.2.4.4 Discussion

SAM combines positioning and blue force tracking updates based on NFFI position descriptions
with advertisements of available Web services described by their WSDLs. Our experimental
solution is tailored for use at the lowest tactical level, the disadvantaged grids, where disruptions
are frequent and bandwidth is scarce. It can be used in environments where the standardized Web
services discovery mechanisms are unsuitable, provided that the network supports IP multicast.
Hashing, caching and compression techniques are employed to keep bandwidth usage low, while
at the same time being able to reap the benefits of XML technology. SAM was the discovery
mechanism of choice for use in the Norwegian MANET at Combined Endeavor 2009.

 40 FFI-rapport 2009/01934

3.3 Conclusion

The table below summarizes our experimental service discovery mechanisms and compares them
to the WS-Discovery standard.

 WS-Discovery Search+ Mercury SAM
Category Application layer Application layer Cross-layer Application layer
Service
descriptions

Port types and
service names

String (Bloom
filter)

String (Bloom
filter)

WSDL and
optional position
and metadata

Standardized Yes No, experimental No, experimental No, experimental
Operation Fully

decentralized or
multicast
suppression using
central discovery
proxy.

Current version
needs one known
node to initiate
overlay network.
Fully decentralized
operation
afterwards.

Fully
decentralized, but
requires OLSR to
be the routing
protocol.

Fully decentralized
using IP multicast.

Suitable for Web
services discovery

Yes Not directly, can
be made to work
through proprietary
implementations

Not directly, can be
made to work
through proprietary
implementations

Yes

Suitable for
disadvantaged
grids

No Theoretically Yes Yes

Applicable in the
Norwegian
network at
Combined
Endeavor?

Yes. This Web
services discovery
mechanism is
tailored for LAN
usage, and is well
suited for use in
the deployed HQ.
Provides
integration with
the Norwegian
registry by
wrapping it in a
discovery proxy.

No, since it is not
tailored for Web
services discovery.
The lack of rich
service
descriptions is a
drawback.
Currently, the
implementation
relies on a known
starting point
during startup of
the overlay. While
this point may be
discovered using a
second discovery
mechanism, it
makes Search+
unsuited for use in
disadvantaged
grids at the present
time. The search
mechanism is
promising, but the
P2P startup and
overlay building
needs further
research.

No, since it is not
tailored for Web
services discovery.
The solution lacks
rich service
descriptions.

Yes. The
mechanism is
tailored for
disadvantaged
grids, where it
provides optimized
Web services
discovery in a
fully decentralized
manner.

FFI-rapport 2009/01934 41

4 Achieving pervasive service discovery
A NEC consists of several different interconnected domains such as strategic networks, tactical
deployed infrastructure and tactical mobile networks. There has been much research activity to
provide service discovery for each of these network domains. However, as different networks
vary in size, equipment, applications and objectives, a variety of service discovery protocols exist
to solve specific purposes. Some of the solutions focus mainly on scalability in order to support
hundreds or even thousands of nodes. Some solutions seek to minimize latency in the discovery
process, while others are focused on reducing the control message overhead to support
bandwidth-constrained environments. Further, the solutions are usually aimed at one specific
network technology e.g. fixed infrastructure networks or MANETs.

Figure 4.1 Different networking technologies are used at different operational levels. Support
for service discovery across network boundaries is needed.

Any service discovery mechanism must take the capabilities and limitations of the target network
into account — be it fixed or mobile. Due to the large variation in network capabilities on
different operational levels, one single service discovery mechanism cannot be chosen that covers
all levels. Thus, there is a need for a toolkit consisting of different service discovery mechanisms
so that each network can use the mechanism that is most suited for that particular network. This
means that the different service discovery mechanisms must be able to interact with each other.
For instance, a protocol in the tactical deployed infrastructure must be able to interact with the
protocol chosen in the MANET at the soldier level (see Figure 4.1).

 42 FFI-rapport 2009/01934

Figure 4.2 Adaptive service discovery protocol.

Figure 4.3 Layered service discovery.

Figure 4.4 Service discovery gateway.

FFI-rapport 2009/01934 43

Several methods exist to support service discovery across network boundaries. We classify the
different methods in three categories:

1. Adaptive service discovery (see Figure 4.2), meaning that one single service discovery
protocol is used across all network domains. The chosen protocol must be able to adapt
its behavior according to the limitations and capabilities of each underlying network. All
applications in the network must be able to interact with this protocol.

2. Layered service discovery (see Figure 4.3), meaning that each network domain can use a
dedicated protocol, but an overlaying protocol controls and connects the different service
discovery protocols.

3. Service discovery gateways (see Figure 4.4): Using this method, each network domain
can choose the most suitable protocol, and interoperability is ensured by using service
discovery gateways between the domains.

Irrespective of the chosen architecture, interoperability is ensured by the creation and
interpretation of service descriptions in clients, servers and in gateways. The structure of the
different service descriptions determines whether interoperability is fully, or only partially
possible.

In the last years, several proposals have appeared to address the challenge of service discovery
across different network domains. Some protocols are adaptive and can be used in different
domains simultaneously. Bethea et al. investigate the use of ontology-based reasoning for the
purpose of developing a general service discovery capability in multi-provider tactical networks
[30].

Others involve a layered structure which allows several legacy protocols to coexist by adding a
service discovery layer above the others, as presented in [31]. Other initiatives involve service
discovery gateways to support transparent interoperability between different protocols, like the
scheme of Allard et al. [32]. That scheme allows Jini clients to use UPnP services and UPnP
clients to use Jini services, without modification to service or client implementations. A similar
study is done by Kang et al. which presents an architecture to provide simple interoperability
among various service discovery protocols using a dynamic service proxy [33]. We argue that a
gateway based approach is best suited for our purpose as it lowers both the architectural
complexity and development cost. Bromberg et al. [31] support our view and conclude that the
gateway approach is more efficient than a layered architecture. The use of gateways also makes it
possible to use legacy client applications and services unmodified in the network. Our design is
therefore based on a gateway design.

4.1.1.1 Service descriptions

A service is a mechanism to enable access to a set of one or more capabilities, where the access is
provided by using a prescribed interface and is exercised consistent with constraints and policies
as specified by the service description [29].

The Web Services Description Language (WSDL) defines an XML grammar for describing
network services as collections of communication endpoints capable of exchanging messages.

 44 FFI-rapport 2009/01934

WSDL service definitions provide documentation for distributed systems and serve as a recipe for
automating the details involved in applications’ communication. Thus, WSDLs are a crucial part
of Web services, since they define the interface through which you access services, as well as
information about where the service can be found in the form of an URL.

A WSDL document uses the following elements in the definition of network services:

• Types, which is a container for data type definitions using some type system, such as
XML Schema Definition.

• Message, which is an abstract, typed definition of the data being communicated.
• Operation, which is an abstract description of an action supported by the service.
• PortType, i.e. an abstract set of operations supported by one or more endpoints.
• Binding, containing a concrete protocol and data format specification for a particular port

type.
• Port, which is a single endpoint defined as a combination of a binding and a network

address.
• Service, which is a collection of related endpoints.

FFI-rapport 2009/01934 45

Figure 4.5 An example WSDL file.

Figure 4.5 presents a WSDL file that we have created as an example. It describes a simple service
called PositionUpdateService. The types section has been omitted for brevity, but it would
contain the data type definitions being used, i.e. a way to express position coordinates, for
example longitude and latitude, and perhaps also altitude. The message sections contain
information about the data being communicated, in this case two message types are defined: We
have a message called GetLastPositionInput and a message called GetLastPositionOutput. The
former is used to issue a request to the service, telling it to respond with a position, i.e. with a
message of the latter type. This use of the defined messages is described in the portType section,
where an operation called GetLastPosition is defined in terms of GetLastPositionInput as the
input message type and GetLastPositionOutput as the output message type. In the binding section,
we see that the service is bound to SOAP over HTTP, which is by far the most common choice
for Web services transport. Finally, a port called PositionUpdatePort is defined using the binding
to SOAP, and thus providing the necessary information to use the PositionUpdateService. In

 46 FFI-rapport 2009/01934

practice, all position services provided in a network would have a WSDL like this, with one
important exception - the address location would change for each deployed instance of the
service. For this particular example, the address is http://example.com/PositionUpdate/, which
points to one deployed position service. In a dynamic environment such as a military ad-hoc
network, you can have services that come and go. This means that while all the static metadata
are valid the entire time, the address location of the service may change. This means that in such
networks, we should be able to discover the current state of the network and find the current
addresses of all available services. In other words, we need the ability to map a specific service
name to one or more address locations.

4.1.1.2 Static vs dynamic service information

A WSDL is used in the creation of a service and for implementing an interface to the service in
client software, but once services are deployed and ready to be invoked only the part of the
WSDL that has a potential dynamic dimension to it is necessary. This knowledge allows us to
address the challenge of Web services discovery in the tactical domain by utilizing an efficient,
proposed solution for service discovery in such networks. Considering that you will use existing
software and existing services in the tactical domain, we can assume that exchanging complete
WSDL information is not necessary, as long as one can discover the current service addresses. In
other words, based on the service name we need to be able to discover the current address
location. That means that a simple yet dynamic service discovery mechanism is needed, which
can provide the necessary address information based on service name searches.

Thus, we propose to use a service discovery gateway between different operational networks, so
that you can get the full Web services information in networks that can handle it, but in
disadvantaged grids, where resources are scarce, you can use an optimized solution for service
discovery which allows you to discover and invoke known service types.

Mercury is an experimental cross-layer solution for service discovery in MANETs, offering
simple string based representation of services. Thus, we use it as an example of a specialized
service discovery mechanism that can become interoperable with an existing Web services
discovery mechanism through the use of an interoperability gateway.

4.1.1.3 The interoperability gateway

The prototype that we discuss in detail here integrates WS-Discovery with Mercury. This was our
original proof-of-concept implementation that was evaluated in the lab. Later the prototype was
extended: At Combined Endeavor we used it to interconnect WS-Discovery and SAM, integrating
the Norwegian MANET with the Norwegian deployed network. Also, we used it to interconnect
SAM with Service Oriented Peers (SOP) (see [37] and [38] for further details) between the
Norwegian MANET and the NC3A MANET.

By using an interoperability gateway, service discovery is feasible across network boundaries,
connecting mobile soldier systems and deployed tactical systems. Hence, our solution combines
the advantages of a directory-based architecture and a distributed MANET architecture. This

FFI-rapport 2009/01934 47

gives the advantage of rich service descriptions in the directory-based domain, and the advantage
of efficiency and redundancy in the mobile directory-less domain. The transparent gateway
between WS-Discovery and Mercury, allows Mercury clients in the soldier network to use WS-
Discovery services, and WS-Discovery clients to use Mercury services. No modification of the
existing services or clients is needed, as the gateway maintains protocol transparency between the
two network domains.

4.1.1.4 Design

The idea is that the gateway resides on a node (i.e. a computer) that is connected to two different
networks with two different service discovery mechanisms. It is based on periodic querying for
services in each connected network. The gateway is designed as a simple thread-based discovery
message router and translator, finding services in one domain, translating the service descriptions
from one type to another, and then republishing the service in another domain using its native
mechanism. Caching is used to determine if a service is new and should be published, or if a
service that was available before has disappeared since the last time the discovery mechanism
was invoked. We address these concepts below, where we discuss the details of the
implementation.

4.1.1.5 Implementation

Our interoperability gateway prototype is implemented using Java. In our evaluation of the
gateway, it was set up on a Linux machine with two network interfaces, one Ethernet interface
(eth0) which was connected to the WS-Discovery enabled domain, and one wireless adapter
(wlan0) which was connected to the MANET running Mercury, see Figure 4.6.

 48 FFI-rapport 2009/01934

Figure 4.6 The interoperability gateway connects two different service discovery domains. It
allows WS-Discovery clients to use Mercury services, and Mercury clients to use
WS-Discovery services. An updated view of the available services in the network is
maintained in the cache.

This setup required one minor modification to the WS-Discovery library, as it was set up to
multicast arbitrarily, meaning that WS-Discovery messages would be multicast on both network
interfaces. By changing only a few lines of code in the library, we were able to bind the WS-
Discovery multicast socket to interface eth0, thereby making sure that WS-Discovery specific
traffic was kept on the LAN only. Mercury, due to its tight coupling with the MANET routing
protocol, did not exhibit this behavior, and could be used as it was without any modification.

WS-Discovery allows a generic probe (i.e. service query) to be done, and thus the gateway could
obtain a complete list of WS-Discovery services from that domain. This list of services could then
be parsed, and the service names could be used to publish the services in the Mercury domain.

FFI-rapport 2009/01934 49

This conversion was easy to achieve, since WS-Discovery retains a lot of information about each
service.

In the Mercury domain, on the other hand, we were faced with two important challenges:

1. The first challenge was related to querying: Since Mercury is based on Bloom filters, you
have to search for specific services — you cannot obtain a list of all available services as
with WS-Discovery.

2. The second challenge was related to service translation: Mercury describes its services
using a simple tuple, i.e. the service name and the IP address where the service can be
invoked. This is less information than is needed by WS-Discovery to describe its
services. In fact, this is only the dynamic service information.

We addressed these issues as follows: Since Mercury did not support listing all available services,
we had to approach that domain differently from that of WS-Discovery. First, we created a list of
all names of all supported services in the Mercury domain. Then, we added this list to the query
functionality in our gateway, so that instead of issuing a non-specific query, the gateway would
search for services from that list in the Mercury domain. This allowed us to find all services in the
Mercury domain that had been pre-defined in the gateway. However, the issue of translating these
services to WS-Discovery still remained. We needed a way to obtain not only the dynamic aspect
of the services, but also the static service information. This meant that our gateway would also
have to function as a metadata repository for the known Mercury services, allowing us to supply
WS-Discovery with both the static and the dynamic service information that it needed. Having
done this, we were able to successfully demonstrate the discovery of — and conversion between
— arbitrary WS-Discovery services and a set of pre-defined Mercury services.

 50 FFI-rapport 2009/01934

Figure 4.7 Service discovery pseudo code.

The gateway used the algorithm shown in Figure 4.7 for each network interface. Basically, the
gateway would periodically (e.g. every 30 seconds, as we used in our evaluation, but this is
configurable) query all services in the WS-Discovery domain and the specified list of services
from the Mercury domain. The services that were found (if any) would then be looked up in the
local service cache. We used the local cache to distinguish between services that had been
discovered, converted and published before, and new services that had appeared in each domain.
If the service was already present in the cache, then it had been converted and published before,
and nothing needed to be done. However, if the service was not in the cache, then it would be
added to it. The service would then be translated from one service description to the other, and
published on the network. Also, during each query iteration we would compare the local cache
containing all previously found services with the list of services found now. If any service had
disappeared from its domain since last time (i.e. the service was present in the cache but not in the
current set of discovered services), then we would delete the service from the other domain as
well by using its native service deletion mechanism. After being removed from the network, the
service would also be removed from the local cache. This behavior allowed the gateway to mirror
the active services from one domain in the other, and remove any outdated information. Thus,
assuming that the service discovery mechanism employed in each domain has an up-to-date view
of the services on the network, then this view would be propagated through our interoperability
gateway.

FFI-rapport 2009/01934 51

4.1.1.6 Discussion

We have considered ways to achieve service discovery interoperability between different
operational networks, and have implemented a prototype service discovery gateway. The
alternatives considered were adaptive service discovery, layered service discovery and service
discovery gateways.

An interoperability gateway is a simple and efficient means of interconnecting two heterogeneous
networks, as it provides transparent service discovery description translation from one domain to
the other. It is the only one of the three approaches that also has the benefit of allowing legacy
clients and servers to function in their respective domains, since it does not require the systems to
be adapted to support a new solution. Each system can continue to use the service discovery
mechanism that it is designed to use, and that is best suited to its network.

These considerations formed the basis for our decision to pursue a gateway solution. We were
able to successfully demonstrate that it is feasible to implement and utilize such an
interoperability gateway between two heterogeneous networks using their respective service
discovery mechanisms.

At CE, we implemented two such service discovery gateways that we placed in the
interoperability points between the networks:

• The gateway between the Norwegian MANET and the Norwegian HQ translated between
SAM and the standardized WS-Discovery mechanism. This allowed us to be
interoperable with a standard, which through a so-called discovery proxy could provide
further integration with the ebXML registry in our HQ.

• The gateway between the Norwegian MANET and the NC3A MANET translated
between SAM and the mechanism NC3A used in their MANET, an experimental peer-to-
peer based technology called SOP.

5 Registry experiments
During Combined Endeavour 2009 Norway and NC3A conducted experimentation in the area of
federating metadata registries based on the Organization for Advancement of Structured
Information Standards (OASIS) electronic business eXtensible Markup Language (ebXML)
standard, in particular the ebXML Registry Information Model [34] and the ebXML Registry
Services and Protocol Specification [35]. These standards are a recommendation by the
Information Services Sub-Committee 5 (ISSC/SC5) XML Management Services Working Group
(XMLSWG), which was endorsed by the Information Services Sub-Committee (ISSC).
Preparation work and experimentation was done via the Core Enterprise Services (CES) test bed.

This section explains the experimentation environment, the federation mechanisms and
approaches that were tested and the lessons learned.

 52 FFI-rapport 2009/01934

5.1 Experimentation environment

The experimentation environment used for pre-testing (i.e. the CES Testbed) was similar to the
experimentation environment in Combined Endeavour. The Norwegian metadata registry was
connected with the NC3A NATO Metadata Registry & Repository (NMRR) prototype via a
switch (see Figure 5.1).

Figure 5.1 Network layout for NC3A-NOR registries federation.

The machines in the test were using the ebXML reference implementation OMAR (also called
freebXML), where both the NOR MDR and the NC3A NMRR are built upon OMAR version 3.1.

5.2 Federation mechanisms
The [35] specification describes four different federation mechanisms, i.e.:

• Federated query
• Inter-registry object references
• Local caching of data from another registry
• Object relocation

Due to several challenges, it was decided to focus upon two of these federation mechanisms, i.e.,
the federated query and the inter-registry object references. Compared to the other mechanisms,
the federated query mechanism is foreseen to be used most heavily within an operational
metadata registries federation environment.

The federated query mechanism was demonstrated to work in both directions. That is, a query
received via the NMRR user interface was federated to the NOR MDR and vice versa. Moreover,
the inter-registry object references mechanism was tested. That is, by joining the federation a
reference to the NMRR instance was created in the NOR MDR.

5.3 Federation approaches

Before going into the details of the actual experiment, it is relevant to explain the two ways in
which a federation can be created and how the membership of the federation is established, i.e.
active joining and manual configuration.

FFI-rapport 2009/01934 53

Figure 5.2 Create a Federation object via the NMRR user interface (web-browser).

In both cases, the creation of the federation happens via the user interface (see Figure 5.2), where
a user can create a new Federation object by filling out the name, description and replication
synchronization latency of the Federation. The latter is related to a period for synchronizing the
federation metadata (see [35]).

5.3.1 Active joining (preferred approach)

The preferred approach outlined in the [35] specification is to use the so-called Inter-Registry
Object References to refer to remote registries. Instead of creating a local representation of a
remote registry, the remote registry should actively join the federation by “submitting an instance
of an Extramural Association that associates the Federation instance as sourceObject, to its
Registry instance as targetObject. The home registry for the Association and the Federation
objects MUST be the same” [35]. While this approach is supported by the NMRR user interface,
it is not supported by the ebXML reference implementation user interface.

This approach was used to join the NMRR to a Federation in the NOR MDR. It required write
access by an NMRR user within the NOR MDR, which was achieved through the following
steps:

• Register a user in the NOR MDR (called ”WRITE Federate NC3A”) via the OMAR web
browser interface (NOR MDR)

• Download the p12 certificate.
• Import the p12 certificate in the web-browser
• Import the p12 certificate in the NMRR keystore
• Register the ”WRITE Federate NC3A” user in the NMRR
• Classify the ”WRITE Federate NC3A” user as RegistryAdministrator in both the NMRR

and the NOR.

5.3.2 Manual configuration (alternate approach)

In the manual approach, the joining is done by the administrator of the registry which contains the
Federation object (note: in order to perform federated queries in both directions, both registries
need to configure the Federation).

 54 FFI-rapport 2009/01934

Figure 5.3 Create a Registry object via the NMRR user interface (web-browser).

For each Registry that would like to join the federation, a Registry object has to be created. In the
NMRR user interface (web-browser) the Registry object can be created by filling out the name
and description of the Registry object, the registry Uniform Resource Locator (URL) (which
takes the form http://<hostname>:<port>/omar/registry) and other information as shown in Figure
5.3. Once the Registry object exists, it can be added to the Federation also using the NMRR web-
browser interface.

5.4 Lessons learned

This section describes the lessons learned from this experiment.

5.4.1 Federation approach

The experiment has indicated two ways of configuring the federation, i.e. active joining and
manual configuration. It is important that the pros and cons of the different federation approaches
are well understood. This is considered valuable input for the NATO Metadata Registries
Federation Specification, which is being developed under the ACT POW 2009/2010.

5.4.2 Security infrastructure

In order to actively join a federation in the NOR MDR, an NMRR user requires permission to
write in the NOR MDR. Currently, each metadata registry maintains its own local keystore with
the public keys associated to each of the different user certificates. This way, a user registered in
one metadata registry cannot access another registry unless he has registered with the other
metadata registry as well.

FFI-rapport 2009/01934 55

Instead of duplicating user information among the different metadata registries in a federation, it
is recommended to use security services which are separate from the metadata registry web
services.

Further research and experimentation is required in this area to determine the details (e.g., which
security services are required, what are the interfaces, what are the consequences for cross-
security domain interoperability).

5.4.3 Registry profile interoperability

Different metadata registries may apply the ebXML Registry Information Model (ebRIM) in
different ways. In other words, they use different registry profiles, which results in a reduced
level of interoperability. For example, the artifacts in one registry may be categorized differently
than the artifacts in another registry. To ensure that users can still discover and retrieve the
metadata that they are looking for, some form of mediation is required among the different
registry profiles.

Further research and experimentation is required in this area to determine how mediation between
different registry profiles can be achieved in a dynamic and flexible manner.

5.4.4 Unique identification system

Each object in a metadata registry has an identifier that is unique within that registry. As stated in
[OASIS ebRS, 2005]: “The id MUST be a valid Uniform Resource Name (URN) and MUST be
unique across all other RegistryObjects in the home registry for the RegistryObject.” However,
the [OASIS ebRS, 2005] does not state that the id should be unique across all registries in a
particular federation; neither does it tell whether two objects with the same id residing in different
registries should be treated as the same object or as different objects.

Research and experimentation is required to define the best approach for unique identification of
registry objects within a federation of multiple registries.

5.4.5 The overall experiment

Lower bandwidth may not be a big issue for Web services, but unreliable connectivity is a
problem. This can be mitigated by store-and-forward techniques such as implemented in the
DSProxy. However, with the potential for an unstable network, Web services are not suitable for
real-time data.

We have seen that service discovery is possible in and across heterogeneous networks. However,
by using a transparent gateway to translate between discovery protocols you may lose some
service information going from one network to the other. For example, SAM supports both
service and position information, but WS-Discovery supports only service information. This
meant that our NFFI tracks had to be assembled and built by the gateway, since it was the point
receiving the position information. The NFFI tracks could then be exposed as a Web service. The
important thing about using gateways for interoperability is that it is sufficient to know the

 56 FFI-rapport 2009/01934

interface used by another network; you do not need to know the functionality details. This was the
case with SOP, where we were able to extract service information, despite being unaware of the
NC3A’s network topology and how SOP it was deployed in their network.

We noticed some issues when using OMAR, the open source ebXML reference implementation:
First, it was not easy to install. You need several old Java libraries to get it to work, since it is
incompatible with some of the newer ones. Thus, you need to use exactly the same library
versions that are mentioned on the ebXML website. Second, you have to use Sun’s own Java. We
attempted to install OMAR on a PC using Ubuntu Linux, and the default Java was OpenJDK.
That implementation does not implement security, and thus compiling OMAR failed. After
uninstalling OpenJDK and installing Sun’s own JDK then we were able to compile OMAR.
Third, there were issues configuring OMAR properly. OMAR comes with two user interfaces,
one Web interface and one Java interface. The Java GUI and the Web GUI support different
operation sets. In practice, you need to use both. However, neither of the GUIs set the resource
HOME attribute, which is needed in a federation. This attribute tells the registry where the
resource belongs. If this attribute is empty, then all responses in a federated query will be treated
as if the resources belong to the local registry. If this is not the case, then looking at the XML
artifacts will fail, since the identifier will not be resolved to the proper repository’s address. To
overcome this we had to update the repository database manually, since neither of the provided
GUIs supported setting the HOME attribute. This is a hassle, but if you want to use OMAR you
have to either live with it or write a new GUI that supports all the necessary functionality. The
NC3A had remedied this situation by creating NMRR – their GUI to ebXML.

Our use of registries shows that they can be employed in the deployed HQ, and they can also be
used in a federation between HQs. The NC3A has shown that P2P can be employed (i.e., the SOP
in their network), and while this technology is mostly suitable in large fairly static networks, it
can also be employed to some degree in dynamic networks. In highly dynamic networks
decentralized mechanisms should preferably be used, since they address the aspect of service
availability and liveness. We addressed these issues by using our experimental SAM mechanism
in our MANET. Interoperability between heterogeneous networks and mechanisms can be
achieved by

• Using service discovery gateways which translate between discovery protocols.
• Deploying proxies that optimize service invocation across the networks.

The issues we encountered with the ebXML reference implementation clearly show that while
standards are important for interoperability, the maturity of the available products is equally
important for system usability.

6 Summary
Standards are important for interoperability between systems from different vendors and nations.
For Web services, there exist three standards related to service discovery: The UDDI and
ebXML registries, and the decentralized WS-Discovery.

FFI-rapport 2009/01934 57

The standardized Web services discovery mechanisms are well suited for use in networks with
high bandwidth and fixed infrastructure, whereas experimental solutions must be used in
disadvantaged grids. Through our experiments we have shown how interoperability between the
experimental and the standardized mechanisms can be achieved using service discovery
gateways. By using the gateway approach, each nation can use proprietary solutions suitable for
their respective networks, since the gateway can translate to another protocol, thus enabling cross-
network service discovery interoperability.

 58 FFI-rapport 2009/01934

References
[1] R. Faucher et al, “Guidance on Proxy Servers for the Tactical Edge”, MITRE technical
 report MTR 060175, September 2006.
[2] K. Lund et al, “Using Web Services to Realize Service-Oriented Architecture in Military
 Communication Networks”, IEEE Communications Magazine, Special issue on Network-
 Centric Military Communications, October 2007.
[3] V. Kawadia and P. R. Kumar, “A Cautionary Perspective on Cross Layer Design”, IEEE
 Wireless Commun., vol 12, number 1, February 2005.
[4] I. Chlamtac, M. Conti, and J. J. Liu. “Mobile ad hoc networking: imperatives and
 challenges”, Ad Hoc Networks, 1(1):13–64, July 2003.
[5] C. Perkins, E. Belding-Royer, and S. Das. “Ad hoc On-Demand Distance Vector (AODV)
 Routing”, RFC 3561 (Experimental), July 2003.
[6] T. Clausen and P. Jacquet. “Optimized Link State Routing Protocol (OLSR)”, RFC 3626
 (Experimental), October 2003.
[7] Kongsberg Defence & Aerospace AS. “WM600 – Tactical Broadband Wireless Module”,
 Datasheet,
 http://www.kongsberg.com/en/KDS/Products/~/media/KDS/Files/Products/Defence%20Com
 munication/wm600_datasheet_rev_rc_small.ashx
[8] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors”,
 Communications of the ACM, 13(7):422–426, 1970.
[9] S. Helal, N. Desai, V. Verma, and C. Lee. “Konark - a service discovery and delivery
 protocol for ad-hoc networks”, Proceedings of the Third IEEE Conference on Wireless
 Communication Networks (WCNC), New Orleans, 2003.
[10] J. L. Jodra, M. Vara, J. M. Cabero, and J. Bagazgoitia. “Service discovery mechanism over
 OLSR for mobile ad-hoc networks”, Advanced Information Networking and Applications,
 AINA, 2:534–542, 2006.
[11] R. Rivest. “The MD5 Message-Digest Algorithm”, RFC 1321 (Informational), April 1992.
[12] olsr.org. “The OLSR daemon”, http://www.olsr.org/
[13] A. Tønnesen, A. Hafslund and Ø. Kure. ”The Unik-OLSR Plugin Library”, In The OLSR
 Interop and Workshop, 2004.
[14] Clip2. “The gnutella protocol specification v0.4”, document revision 1.2.
 http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf
[15] Peng Gu, Jim Wang, and Hailong Cai. “ASAP: An advertisement-based search algorithm for
 unstructured peer-to-peer systems”, In International Conference on Parallel Processing
 (ICPP), September 10-14, page 8, Xian, China, 2007.
[16] G. Tyson, A. Mauthe, T. Plagemann, and Y. El-khatib. “Juno: Reconfigurable Middleware
 for Heterogeneous Content Networking”, In 5th International Workshop on Next Generation
 Networking Middleware (NGNM), September 22-26, Samos Island, Greece, 2008.
[17] Anders Fongen, M. Gjellerud, and Eli Winjum. ”A military mobility model for MANET
 research”, In Parallel and Distributed Computing and Networks (PDCN 2009), February 16
 – 18, Innsbruck, Austria, 2009.
[18] Albert-Laszlo Barabasi and Reka Albert. “Emergence of scaling in random networks”,
 Science, 289:509, 1999.
[19] M. Portmann, P. Sookavatana, S. Ardon, and A. Seneviratne. “The cost of peer discovery and
 searching in the gnutella peer-to-peer file sharing protocol”, In Proceedings Ninth IEEE
 International Conference on Networks, 10-12th October, pages 263–268, Bangkok, Thailand,
 2001.
[20] Magnus Skjegstad, Frank T. Johnsen. ”Search+: An efficient peer-to-peer service discovery
 mechanism”, FFI-rapport 2009/01610.
[21] Joakim Flathagen. “Service discovery in the soldier networking environment”, FFI-Rapport
 2008/02090.
[22] OASIS. “Web Services Dynamic Discovery (WS-Discovery)”. Version 1.1, July 2009.
 http://docs.oasis-open.org/ws-dd/ns/discovery/2009/01
[23] J. Schlimmer (Editor). “Web Services Dynamic Discovery (WSDiscovery)”, Draft, April
 2005, http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf
[24] M. Gudgin (editor). “SOAP-over-UDP”, 2004, http://specs.xmlsoap.org/ws/2004/09/soap-
 over-udp/soap-over-udp.pdf

FFI-rapport 2009/01934 59

[25] F.T. Johnsen et al. ”Multinett II: SOA and XML security experiments with Cooperative ESM
 Operations (CESMO)”, FFI-Rapport 2008/02344.
[26] T. Gagnes. ”Assessing Dynamic Service Discovery in the Network Centric Battlefield”,
 Military Communications Conference, IEEE MILCOM 2007, October 2007.
[27] R. Porta. ”Friendly Force Information Sharing – Lessons Learned and way towards NNEC”,
 Presentation at the 7th NATO CIS Symposium, Prague, Czech Republic, October 2008.
[28] F. T. Johnsen et al. ”Web services and service discovery”, FFI-Rapport 2008/01064.
[29] OASIS. ”Reference model for service oriented architecture”,
 http://www.oasis-open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf, Draft
 1.0, February 2006.
[30] W. Bethea et al., ”Automated discovery of information services in heterogeneous distributed
 networks”. IEEE MILCOM 2008, November 2008.
[31] Y. Bromberg et al., ”Interoperability of Service Discovery Protocols: Transparent versus
 Explicit Approaches”. IST Mobile and Wireless Summit, 2006.
[32] J. Allard et al., ”Jini Meets UPnP: An Architecture for Jini/UPnP Interoperability”, In
 Proceedings of SAINT, page 268, 2003.
[33] S.H. Kang et al., ”An Architecture for Interoperability of Service Discovery Protocols Using
 Dynamic Service Proxies”, Information Networking, pages 786–795, 2005.
[34] Organization for the Advancement of Structured Information Standards (OASIS), ebXML
 Registry Information Model, Version 3.0, OASIS Standard, 02 May 2005,
 http://docs.oasis-open.org/regrep/regrep-rim/v3.0/regrep-rim-3.0-os.pdf (viewed at 13 August
 2007).
[35] Organization for the Advancement of Structured Information Standards (OASIS), ebXML
 Registry Services and Protocols, Version 3.0, OASIS Standard, 02 May 2005,
 http://docs.oasis-open.org/regrep/regrep-rs/v3.0/regrep-rs-3.0-os.pdf (viewed at 13 August
 2007).
[36] Adnan Noor Mian, Roberto Baldoni, and Roberto Beraldi. “A survey of service discovery
 protocols in multihop mobile ad hoc networks.” In IEEE Pervasive computing, pages 66-74,
 January-March 2009.
[37] M. Amoretti et al, “SP2A: a Service-oriented Framework for P2P-based Grids”, In
 proceedings of the 3rd International Workshop on Middleware for Grid Computing
 (MGC05), Grenoble, France, 2005.
[38] D. Marco-Mompel, “SERVICE ORIENTED PEER PROTOTYPE FOR MOBILE USERS”,
 NC3A Technical Note Draft under project SPW001495, November 2007.
[39] K. Lund, T. Hafsøe, F. T. Johnsen, and E. Skjervold, “Information Exchange in
 Heterogeneous Military networks”, FFI-Rapport 2009/02289.

 60 FFI-rapport 2009/01934

Appendix A Terminology
Name Domain Description
mDNS NC3A Multicast DNS
NMRR NC3A NATO Metadata Registry and Repository. The term NATO

Metadata Registry & Repository is used to denote the overall web-
enabled information system, including services, that needs to be
developed for storing, controlling and retrieving metadata in a way
that satisfies both administrative and operational requirements.

NMRR prototype NC3A The NMRR prototype is an ebXML-based implementation used to
verify and validate the NMRR specifications.

SDS NC3A Service Discovery Service. The Service Discovery Service is a
service for discovery of services. It provides visibility and access to
information services available in the network-enabled environment.

SDS Prototype NC3A The SDS prototype is a JXTA-based implementation used to verify
and validate the SDS specifications. To achieve interoperability
with other discovery mechanisms it includes bridges for mDNS,
UDDI and ebXML.

SOP NC3A Service Oriented Peer. A JXTA peer with a GUI that jointly with
SDS peer discovers/advertises and invokes web services on the
JXTA peer network

NetPeerGroup NC3A-FFI JXTA peer group. It will be the virtual network that FFI peers and
NC3A peers will connect and communicate trough.

SOP External
services

NC3A Web services outside the JXTA network. For instance WS available
in a web server

SOP Remote
services

NC3A JXTA services advertised in another JXTA peer in the JXTA peer
group.

SOP Local
services

NC3A Local JXTA services of the peer.

JXTA peer NC3A The JXTA peers form a peer-to-peer based overlay network which
supports both service discovery and service invocation. Developed
by NC3A.

JXTA interface FFI Interface to JXTA used by the Service Discovery Gateway to
advertise services in the NetPeerGroup.

Registry
federation

NC3A-FFI A registry federation is a group of registries that have voluntarily
agreed to form a loosely coupled union. Such a federation may be
based on common business interests and specialties that the
registries may share. Registry federations appear as a single logical
registry to registry clients.

Replication NC3A-FFI Operation by which one registry copies services and other data to a
target registry so that the target registry can resolve locally queries
intended to be resolved by the source registry. Normally this
mechanism requires publish-subscribe configuration

Tactical mobile
domain/network

NC3A-FFI Term referring to a mobile or/and dynamic network (MANET)
where services are registered/un-registered at unpredictable times.

Tactical deployed
domain/network

NC3A-FFI Term referring to the deployed, wired network where services are
meant to have long life.

SD NC3A-FFI Service Discovery abbreviation
MANET NC3A The tactical network composed by SDS and SOP peers in the JXTA

network NetPeerGroup. The NC3A MANET is based on Rajant
BreadCrumb nodes.

MANET FFI The FFI MANET consists of KDA WM600 radios; several regular
nodes and one as a gateway to the NC3A MANET, as it is also
equipped with a Rajant BreadCrumb device. This gateway node is
also a JXTA peer in the NetPeerGroup joint with NC3A , since the
service discovery gateway is running on this node.

Service Discovery
Gateway

FFI The service discovery gateway supports multiple service discovery
mechanisms and can translate between them. The gateway is

FFI-rapport 2009/01934 61

necessary because FFI and NC3A use different MANET
technologies and different SD mechanisms at the tactical level.
Thus, the gateway facilitates interoperability through mutual
discovery of services by translating between the SD mechanisms
and re-publishing the services using the network native SD
mechanism. Developed by FFI.

WS-Discovery FFI FFI has implemented the mandatory parts of the Web Services
Dynamic Discovery (WS-Discovery) draft specification from 2005:
http://schemas.xmlsoap.org/ws/2005/04/discovery/

Mercury FFI Mercury is a cross-layer service discovery mechanism for
MANETs. It is based on Bloom filters and is implemented as a
plugin to the OLSR routing protocol, providing simple string based
search and service lookup. Developed by FFI.

SAM FFI SAM, short for Service Advertisements in MANETs, is an
application level discovery mechanism which incorporates
positioning and service advertisement dissemination. Developed by
FFI.

Service NC3A-FFI As defined by OASIS: A service is a mechanism to enable access to
a set of one or more capabilities, where the access is provided by
using a prescribed interface and is exercised consistent with
constraints and policies as specified by the service description.

SOAP NC3A-FFI SOAP is the Web services protocol. SOAP is transport protocol
agnostic, but is most commonly used over HTTP/TCP. Exceptions
exist, for example WS-Discovery uses SOAP over UDP.

UDDI NC3A-FFI Universal Description, Discovery and Integration, an OASIS
standard for a Web services registry. In this report we do not
consider UDDI, but its competing standard: ebXML.

ebXML FFI OASIS’ other registry standard is electronic business XML. In
many ways it is more flexible than UDDI (e.g., better federation
mechanism), and since the NMRR is based on ebXML, FFI chose to
use this standard for the joint experiments to ease interoperability
with the NC3A.

WSDL NC3A-FFI The Web Services Description Language is an XML construct
which allows service contracts to be made. These contracts define
message formats and bindings for SOAP to transport protocols, thus
allowing clients and services adhering to the same WSDL to interact
in a standardized and interoperable manner.

Search+ FFI Search+ is a peer-to-peer based service discovery mechanism. It is
based on Bloom filters, providing simple string based search and
service lookup. The mechanism is subscription based, thus reducing
overall communication needs. Developed by FFI.

 62 FFI-rapport 2009/01934

Appendix B Bloom filters
A Bloom filter is a hash based data structure that provides a membership function with a certain
probability of false positives, never false negatives. Bloom filters were first described by Bloom
in [8].

More specifically, a Bloom filter comprises an array of bits and a number of independent hash
functions. When a data element is inserted into the filter, the hash functions are used to calculate a
set of hash values representing the data element. For each hash value, the corresponding bit is set
in the array.

To check whether a Bloom filter contains a specific data element, the process is the same, except
that the generated hash values are compared to the existing array instead of being stored. If all the
bits corresponding to the different hash values are true, then the data element can be determined
to have been stored in the Bloom filter with a given probability.

A small Bloom filter example is shown in Figure B.1.

Figure B.1 A Bloom filter with k = 3 and m = 18. Data elements x and y are inserted into the
bit array — one bit is set for each hash function. Elements w and y are checked
against the filter — y is present with a certain probability, w is decidedly not since
one of the bits is false.

The probability of a false positive in a Bloom filter is the same as the probability of all the bits for
a data element already being set. We can calculate the probability p that one specific bit is not set
by a specific hash function in a bit array of size m with:

FFI-rapport 2009/01934 63

Further, we can calculate the probability p of a specific bit not being set by k hash functions after
inserting n elements with:

Therefore, the probability p that k hash functions set k specific bits to true after inserting n data
elements can be calculated with:

Equation B.1 gives us the probability that the bits corresponding to the hash values of a new data
element are already set to true— or in other words, the probability of false positives.
Ideally, p should be kept as small as possible, but it can also be desirable to keep k or m small, to
save computing resources or storage capacity — or in our case, bandwidth. Intuitively, we can see
that p will increase when n increases, and decrease when m increases. A high m=n will give a
smaller probability of false positives. The optimal number of hash functions k for a number of
given data elements n in a bit array of size m can be determined by:

In our experiments we wanted to have a Bloom filter with low probability of false positives with
100 stored elements. We chose n = 100 and m = 1000, with m=n = 10. Using Equation B.2, we
find k = 6.93, which we round up to 7. The probability of false positives can then be calculated
with Equation B.1, giving p = 0.00819.

	English summary
	Sammendrag
	Contents
	Introduction
	Combined Endeavor

	1.2 NATO Friendly force information (NFFI)
	Motivation - service discovery at (and across) different operational levels
	Operational levels
	Vertical integration
	Horizontal integration
	Web services standards

	Evaluation of service discovery mechanisms for tactical mobile networks
	An overview of MANETs
	Reactive routing
	Proactive routing
	OLSR

	Service discovery mechanisms
	WS-Discovery
	Implementation
	Discussion

	Peer-to-peer based service discovery
	Search algorithms for P2P networks
	Flooding
	ASAP
	Search+
	Implementation and evaluation
	Evaluation setup
	Evaluation
	Discussion

	Mercury
	Protocol format
	Distributing service descriptors
	Caching
	Implementation and use
	Discussion

	SAM
	Observations and system design
	Implementation
	Evaluation
	Discussion

	Conclusion

	Achieving pervasive service discovery
	Service descriptions
	Static vs dynamic service information
	The interoperability gateway
	Design
	Implementation
	Discussion

	Registry experiments
	Experimentation environment
	Federation mechanisms
	Federation approaches
	Active joining (preferred approach)
	Manual configuration (alternate approach)

	Lessons learned
	Federation approach
	Security infrastructure
	Registry profile interoperability
	Unique identification system
	The overall experiment

	Summary
	References
	Terminology
	Bloom filters

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.5

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

 /Arial-Black

 /Arial-BlackItalic

 /Arial-BoldItalicMT

 /Arial-BoldMT

 /Arial-ItalicMT

 /ArialMT

 /ArialNarrow

 /ArialNarrow-Bold

 /ArialNarrow-BoldItalic

 /ArialNarrow-Italic

 /ArialUnicodeMS

 /CenturyGothic

 /CenturyGothic-Bold

 /CenturyGothic-BoldItalic

 /CenturyGothic-Italic

 /CourierNewPS-BoldItalicMT

 /CourierNewPS-BoldMT

 /CourierNewPS-ItalicMT

 /CourierNewPSMT

 /Georgia

 /Georgia-Bold

 /Georgia-BoldItalic

 /Georgia-Italic

 /Impact

 /LucidaConsole

 /Tahoma

 /Tahoma-Bold

 /TimesNewRomanMT-ExtraBold

 /TimesNewRomanPS-BoldItalicMT

 /TimesNewRomanPS-BoldMT

 /TimesNewRomanPS-ItalicMT

 /TimesNewRomanPSMT

 /Trebuchet-BoldItalic

 /TrebuchetMS

 /TrebuchetMS-Bold

 /TrebuchetMS-Italic

 /Verdana

 /Verdana-Bold

 /Verdana-BoldItalic

 /Verdana-Italic

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.16667

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.16667

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages false

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>

 >>

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

