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ABSTRACT

In burst mode SAR imaging, echo intensity depends on the target’s azimuth position in the antenna pattern.
As a result, an amplitude modulation known as scalloping may appear, particularly in ScanSAR images
of ocean areas. A denoising method, recently developed for multibeam bathymetry, can be used to reduce
residual scalloping in ScanSAR images. The algorithm is analogous to a band-stop filter in the frequency
domain. Here, the transform is the composition of an edge detection operator and a discrete Radon transform
(DRT). The edge operator accentuates fine-scale intensity changes; the DRT focuses linear features, as each
DRT component is the sum of pixel intensities along a linear graph. A descalloping filter is implemented in
the DRT domain by suppressing the range direction. The restored image is obtained by applying the inverse
composite transform. First, a rapidly converging iterative pseudo-inverse DRT is computed. The edge
operator is a spatial filter based on a discrete approximation of the Laplace operator, but modified to make
the operator invertible. The method was tested on ocean scene ScanSAR images from the Envisat Advanced
Synthetic Aperture Radar. The scalloping effect was significantly reduced, with no apparent distortion or
smoothing of physical features.

Keywords: Discrete Radon transforms, edge detection operators, image restoration, iterative methods,
Laplace operator, scalloping, ScanSAR, stripe noise, synthetic aperture radar

1. INTRODUCTION

In burst mode synthetic aperture radar (SAR) imaging, a point target is illuminated for only a part of
the time it lies within the radar beam footprint. Consequently, the received echo intensity depends on the
azimuth (along-track) antenna pattern and the target’s azimuth angles relative to the beam centre, during the
burst. This azimuth dependence may cause artifacts in SAR imagery, including azimuth scalloping, a periodic
modulation of the image intensity in the azimuth direction1 (Fig. 1). SAR image formation includes beam
pattern and descalloping corrections. In particular, if several adjacent looks overlap, weighting functions may
be applied when summing the contributions of each look to reduce the azimuth dependence.2 However, this
requires accurate estimates of the beam centre or Doppler centroid, otherwise a residual scalloping remains.
Residual scalloping has been seen, in particular, in wide-swath ScanSAR images of ocean areas, and may
interfere with image recognition tasks such as surface wind or wave field mapping3 and oil spill detection.4

Corrections for scalloping may also be implemented as a postprocessing step applied to SAR image prod-
ucts. For example, a descalloping filter can be implemented using wavelet transforms, as demonstrated by
Schiavulli et al.5 Ripel4 achieved good results by scaling pixel intensities with a row-dependent correction
factor. The original image, and a smoothed version without scalloping, were summed along the horizontal
(column) dimension to obtain two row vectors whose element-wise ratio yielded the correction factors. The
analysis of Romeiser et al3 highlights the complexity of the scalloping modulation. They too obtain the final
image by multiplying the noisy image with an array of correction factors, i.e., scalloping is treated as multi-
plicative noise. The correction factors are obtained by spectral peak analysis and masking in the frequency
(Fourier transform) domain, with iterative refinement to eliminate secondary artifacts introduced by spectral
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Figure 1. ENVISAT ASAR ScanSAR image (wide swath mode) of the southern North Sea, with landmask applied. (To
the lower right, the Dutch coast roughly from the Hague and northwards; to the lower left, a part of Norfolk, England.)
The contrast of the image has been adjusted to make it appear less dark in print. Scalloping, an amplitude modulation
in azimuth direction, is seen as faint, densely spaced horizontal stripes. The effect of the denoising algorithm is
demonstrated on three subimages with 1024× 1024 pixels, marked by the black frames (Sec. 3) ©ESA/KSAT.

peak suppression. In general, any descalloping filter, whether transform based or implemented in the spatial
domain, should remove artifacts with as little smoothing or distortion of physical features as possible.

A new image restoration method was recently developed for reducing track line artifacts and motion-
induced errors in multibeam echo sounder bathymetry.6 We demonstrate that the method, with minor
modifications, can be successfully applied to remove residual scalloping in processed ScanSAR images. The
method is system independent and analogous to an image filter in the Fourier or wavelet transform domains,
with no assumptions about noise periodicity or orientation. In Sec. 2, the main points of this algorithm are
reviewed. The algorithm was applied to ocean scene images from the Envisat Advanced Synthetic Aperture
Radar (ASAR). In Sec. 3, the effect is demonstrated using three 1024 × 1024 pixels frames taken from the
SAR image in Fig. 1. The paper concludes, in Sec. 4, with a short discussion on results, limitations, and
possible improvements.

2. ALGORITHM

The proposed denoising method has three elements: an edge detection operator L, a discrete Radon transform
(DRT) R, and an approximation operator T . The algorithm is analogous to applying a band-stop filter in the
Fourier transform (frequency) domain. Here, the transform is the composite operator R ◦ L. The operator
L accentuates fine-scale intensity changes, and R focuses linear features because each DRT component is
the sum of pixel intensities along a linear graph. For an image f ∈ RN×N , the DRT, r = R [f ], may be
represented by a matrix where each element ri,j corresponds to a particular slope and intercept, and the
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column index j uniquely identifies the slope, i.e., orientation (Sec. 2.2). The filter is implemented by zeroing
the elements of r in a narrow band of columns given by the orientation of the noise. For azimuthal scalloping,
this means the direction perpendicular to the satellite track.

The composite operator R ◦ L is applied to the detrended image f − T [f ], where T [f ] ∼ f is an
approximation that does not preserve noise or artifacts (Sec. 2.3). If this step is omitted, large values of L [f ]
along the boundary of the image may be altered by the DRT domain filter, causing distortions in the restored
image. Finally, the inverse operator (R ◦ L)−1 = L−1 ◦ R−1 is applied and the trend T [f ] added back to
obtain the restored image. Note that, the filtered DRT r′ (with “band-stop” filter applied) is in general not
in the range of R. Consequently, the inverse DRT, R−1, acts as a pseudo-inverse operator (Sec. 2.2). The
complete procedure is summarized as Algorithm 1. The following subsections provide brief reviews of the
basic elements of the algorithm. A more detailed analysis may be found in Ref. 6.

Algorithm 1 Reduce scalloping

Precondition: f ∈ RN×N is a square image of size N ×N pixels, where N is a power of 2
Require: Index, c, of DRT column corresponding to range direction
Require: Half-width, w (number of DRT columns), of band-stop filter

1: function Descalloping(f)
2: t ← T [f ]
3: r ← R [L (f − t)]
4: for j ← c− w to c+ w do
5: for all rows i do .
6: ri,j ← 0

7: f ← L−1
[
R−1(r)

]
8: return f + t

2.1 Edge operator

The Laplace operator (or Laplacian) in Euclidean space Rd is linear, rotation invariant, edge sensitive, and
noise sensitive. It is defined by ∆ f = ∇·∇f , for f : Rd → R twice differentiable, and related to neighborhood
averages by7

lim
r→0

1

r2 Vol (Bd(x; r))

∫
Bd(x;r)

[f(y)− f(x)] ddy =
1

2(d+ 2)
∆ f(x), (1)

where Vol
(
Bd(x; r)

)
is the volume of the d-dimensional ball { y ∈ Rd : ‖y − x‖ < r }. Equation (1) shows that

∆ accentuates boundaries between distinct regions such that the the local value ∆ f(x) is independent of the
orientation of the structures it detects. For d = 2, a discrete approximation to the Laplacian is obtained by
convolution with the point spread function (PSF)

h =
1

2

1/2 1 1/2
1 −6 1

1/2 1 1/2

 . (2)

The transfer function of this PSF, zero-padded to size N ×N elements, is8

F [h]mn = 4
[
cos2 (kx/2) cos2 (ky/2)− 1

]
≈ −k2 +

3

32
k4 − 1

96
cos (4φ)k4 +O(k6) (3)

where the scaled wave number k = 2π
[
m n

]
/N , for m,n = 0, . . . , N − 1, is expressed in polar coordinates

k, φ. This operator is isotropic for small wave numbers.

Both Eqn. (3) and the continuous transfer function, ∆(k) ∼ −k2, vanish for k = 0. Let h0M denote the
matrix obtained by symmetrically zero-padding Eqn. (2) to size M ×M , and let ηM (ε) be an M ×M matrix
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where the elements ηmn are random numbers such that |ηmn| ≤ ε� 1. A modified Laplacian PSF is obtained
by

ĥ = h0M + ηM (ε). (4)

The edge operator L is defined as
L [f ] = f ∗ ĥ (5)

where ∗ denotes circular convolution. Except for improbable (and replaceable) choices for ηM (ε), the PSF

F [ĥ] does not have zeros, and the inverse is obtained by direct deconvolution, i.e.,

L−1 [g] = F−1
[
F [g] ./F [ĥ]

]
(6)

where ./ denotes element-wise division. It is understood that F [ĥ] has the same dimension as F [f ], obtained

after zero-padding ĥ and circularly shifting the DFT. Furthermore,

lim
ε→0
F [ĥ] = F [h] . (7)

Provided ε� 1, the operator L therefore has the same desirable properties as the standard discrete Laplacian.

2.2 Discrete Radon transform

The Radon transform of a function f : Rn → R integrates f over hyperplanes in Rn, in particular, straight
lines in R2.9 In Refs. 10 and 11, a discrete approximation to the 2D Radon transform was presented, in
which the line integrals are replaced by sums of pixel intensities along certain graphs that include exactly
one pixel from each column in the zero-padded image (matrix). The algorithm is recursive, with 4N2 log2N
arithmetic operations (additions) for N×N pixels images. This is faster than conventional O(N3) algorithms.
Specifically, let fi,j ∈ RN×N denote the pixel intensity in row i and column j, where fi,j = 0 for i, j outside
the range 0 ≤ i, j < N − 1, and the lower left corner pixel is (0, 0). The image size N must be a power of 2.
In the first quadrant, i.e., for slopes from 0◦ to 45◦, a graph representing a straight line starts at pixel (h, 0)
and ends at (h+ s,N − 1), where h is the intercept and s is the slope; this graph is denoted DN (h, s). The
same notation may be applied to the subgraphs obtained when the image is recursively split in vertical halves
to produce subimages of size N ×N/2, N ×N/4, . . . , N × 1. Graphs in subimages of size N × 1 contain a
single pixel. The full graph is constructed recursively by combining subgraphs in pairs of adjacent subimages,
according to the rule10–12

Dn(h, 2s) = D
(L)
n/2(h, s) ∪D(R)

n/2(h+ s, s) (8a)

Dn(h, 2s+ 1) = D
(L)
n/2(h, s) ∪D(R)

n/2(h+ s+ 1, s). (8b)

Here, the right-hand side of the union refers to the right (R) half of the image, and correspondingly for the
left-hand (L) side. The procedure is illustrated in Fig. 2. Slopes in the other quadrants are obtained by
transposing or flipping the image. The full DRT is the disjoint union of four parts (quadrants):

(R1f)(h, s) =
∑

(i,j)∈DN (h,s)

fi,j (0◦ to 45◦) (9a)

(R2f)(h, s) =
∑

(i,j)∈DN (h,s)

fj,i (45◦ to 90◦) (9b)

(R3f)(h, s) =
∑

(i,j)∈DN (h,s)

fj,N−1−i (−90◦ to − 45◦) (9c)

(R4f)(h, s) =
∑

(i,j)∈DN (h,s)

fN−1−i,j (−45◦ to 0◦). (9d)

The number of non-zero elements in each quadrant is at most N2 +N(N − 1)/2, and the minimum value for
h is −N +1, for which the associated graph intersects the image only at a corner pixel. The range R

[
RN×N

]
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Figure 2. Recursive construction of graphs in a 4×4 pixels image. The graphs are formed by joining graphs in the two
4× 2 pixels subimages according to the rule in Eqn. (8). The rise parameter s ranges from 0 to 1 in 4× 2 subimages,
and from 0 to 3 in the 4 × 4 image. When the image is flipped upside down, the graphs are mapped to lines with
slopes in the range −45◦ to 0◦ (faint lines). (Illustration from Ref. 6.)

therefore has dimension P = 4(N2 + N(N − 1)/2) = 6N2 − 2N , and R : RQ → RP is a linear operator
between vector spaces, with Q = N2.

There is also a recursive, linear adjoint algorithm, R+ : RP → RQ,11 whose matrix representation is the
transpose of the matrix representation of R.6 If g = R+R [f ], then gi,j is the sum of f along all graphs
containing pixel (i, j), i.e., g is the backprojection of R [f ]. Press12 has devised an approximate inverse
algorithm for R, here denoted B, which is based on the adjoint operator R+. Suppose r′ ∈ RP is obtained
by applying the “band-stop” filter to r = R [f ] (Algorithm 1). We define a pseudo-inverse, R−1 [r′], as the
solution of the linear system

BRf = Br′. (10)

This solution is found iteratively by applying the Krylov method GMRES (Generalized Minimum Residual).13

Writing b = Br′ and A = BR, GMRES solves the set of least squares problems

xk = min
x∈Kk(A,b)

‖b−Ax‖, k = 1, 2, . . . (11)

where Kk+1(A, b) ≡ span { b,Ab, . . . ,Akb } is a Krylov subspace. In linear algebra terms, this algorithm
involves only matrix-vector multiplications that are implemented by the recursive algorithms B and R. As
a stopping criterion, either a set number of iterations, k (Eqn. 11), or a threshold on the residual ε =
‖b−Axk‖ / ‖b‖ may be used.

2.3 Approximation

The image f ∈ RN×N is downsampled to size N/D × N/D, and interpolated back to size N × N using a
Chebyshev polynomial tensor product basis of total degree p. The approximation algorithm, T , therefore has
two adjustable parameters, D and p. In practice, these are the only parameters that may need tuning in the
descalloping method (Algorithm 1). Here, both N and D are taken to be powers of two, with 1 ≤ D < N .
Interpolation is accomplished via the expansion

f(x, y) ≈
∑

0≤j+k≤p

wjkTj(x)Tk(y), (12)

where { Tk(x) }∞ is the set of Chebyshev polynomials of the first kind on the interval [−1, 1], and thek=0

image f is regarded as a set of evenly spaced discrete samples on the square [−1, 1] × [−1, 1]. There are
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Projection angle

45° 90°

(a) DRT (all quadrants) (b) Close-up
Figure 3. The transform (R ◦ L)(f − T [f ]), where f is the 1024 × 1024 pixels image in Fig. 4a. The four quadrant
transforms (Eqn. 9) fit together in a Möbius band.12 The color map is symmetric about zero, so that white corresponds
to zero and black corresponds to high positive or negative values. The close-up in (b) [black rectangle in (a)] shows
the signature of scalloping at 0◦ projection angle. For selected pixels in the DRT, the red lines in (a) indicate which
projection the pixel corresponds to, with the small squares symbolizing the image frame. For example, the topmost
non-zero value at 0◦ is the sum along the bottom horizontal line in the SAR image.

ηp =
∑p
d=0

(
d+1
d

)
= (p+ 2)(p+ 1)/2 terms in Eqn. (12). As long as N and p are not too large, the coefficients

wjk may be determined by multiplication of the down-sampled image with a generalized matrix inverse of
size ηp × (N/D)2, which may be computed in advance.6

3. EXAMPLES

The method was tested on Envisat ASAR images of ocean areas. The images were aquired in wide swath
(WS) mode, where the instrument switches between five adjacent antenna beams. The polarization is VV, and
the incidence angle range is 17◦–42◦. Each image covers approximately 400× 400 km, with a range/azimuth
resolution of 150× 150 m; the range and azimuth pixel spacing is 75 m. The data were originally processed
by Kongsberg Satellite Services (KSAT) (Tromsø, Norway), for the purpose of oil spill detection (see, e.g.,
Refs. 14 and 15). The examples shown below are 1024 × 1024 pixels subimages of the full image in Fig. 1,
taken over the southern North Sea. This image has two visible artifacts. The first is a residual azimuthal
scalloping, appearing as faint, periodical, horizontal stripes. The second artifact is a gain shift between
adjacent beams, which produces the vertically oriented discontinuities. Scalloping modulations in adjacent
beams (subswaths) are not in phase. Therefore, the descalloping algorithm is most effective when applied to
each beam separately. We have not attempted to correct the gain shift artifact.

Figure 3a shows the composite transform of the subimage in Fig 4a. Each column has a fixed rise
parameter, s, corresponding to a fixed projection angle; the angle is positive clockwise, with 0◦ along the
horizontal (positive x) axis. The DRT is the union of the four quadrant transforms, R1, . . . ,R4 (Eqn. 9),
which have been translated vertically so that they fit together in a Möbius band.12 A unit (one row) increase
along the vertical axis corresponds to a unit change in the intercept parameter h, but each row has constant
h only within each quadrant separately. A close-up (Fig. 3b) shows a string of points at 0◦ projection angle,
with slightly increased intensity; this is the effect of scalloping. The band-stop filter is implemented by zeroing
all pixel values in the blue rectangle in Fig. 3a. The width of the rectangle is approximately 0.6◦ (15 pixels).
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(a) Original image (b) Filtered image

(c) Original image (2× zoom) (d) Filtered image (2× zoom)
Figure 4. Effect of the descalloping filter applied to a 1024×1024 pixels subimage (top frame in Fig. 1)©ESA/KSAT.

The effect of the descalloping filter is shown in Figs. 4–6. The contrast has been increased to make the
images look less dark in print and to better show the scalloping. The scaling is identical for all images. These
results were obtained with the parameters p = 18 and D = 8 for the approximation operator T (Sec. 2.3),
and M = 7 and ε = 10−3 for the edge operator L (Sec. 2.1). The maximum number of iterations with the
GMRES algorithm was six, but two to three iterations also produced satisfactory results. A slight residual
scalloping may still be discerned in the upper parts of Figs. 4b and 6b. However, the scalloping effect is seen
to be significantly reduced in the filtered images, and there is no apparent distortion or smoothing of physical
features.
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(a) Original image (b) Filtered image

(c) Original image (2× zoom) (d) Filtered image (2× zoom)
Figure 5. Effect of the descalloping filter applied to a 1024 × 1024 pixels subimage (middle frame in Fig. 1).
©ESA/KSAT

4. DISCUSSION

Slightly better results are expected with a more careful filter design, e.g., by minimizing the width of the
“band-stop” filter or by replacing the peaks and troughs at 0◦ projection angle with neighborhood values.
The restored images in Figs. 4–6 were obtained directly, without experimentation and parameter tuning.
While this is encouraging, the aforementioned possibility of incurring low-frequency distortions with the
wrong approximation, T [f ], is still a concern (see Sec. 2). This effect can be amended by altering the
parameters p and D (see Sec. 2.3), but we feel a more automatic, fail-safe method should be implemented
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(a) Original image (b) Filtered image
Figure 6. Effect of the descalloping filter applied to a 1024×1024 pixels subimage (lower frame in Fig. 1). ©ESA/KSAT

if the algorithm were to be used in large-scale data processing. The approximation operator was developed
for multibeam bathymetry, with track-line artifacts that are preserved to a high degree by standard low-pass
filters.6 Scalloping has quite different characteristics, and low-pass filters are more effective in this instance.
It may therefore be that a simple averaging filter can replace the polynomial approximation operator in this
particular application.

The DRT10,11 implemented here is a fast algorithm that does not involve interpolation between pixels.
It yields directly a formulation of the inverse problem as a linear system for which iterative methods may
be applied, with convergence to the exact solution when it exists.6 Filtered backprojection algorithms, by
comparison, may cause unwanted smoothing of fine features. However, iterative solutions of large linear
systems have greater computational complexity. For image size N = 1024, the execution time was on the
order of 10–100 s on a small laptop computer (single core, using Matlab). The number of required iterations
depends on the data and applications. There are several ways to speed up the algorithm, e.g., by using only
a single quadrant transform (each operator Ri in Eqn. 9 is injective6), or by processing the image in disjoint
blocks. For block size N ≤ 64, if not larger, the matrix representation of the inverse operator (B ◦ R)−1 [or,
alternatively, (R+ ◦ R)−1] may be precomputed to arbitrary accuracy, and inversion carried out by matrix
multiplication. The DRT algorithm also seems well suited for parallelization.

While the example data presented in Sec. 3 were obtained with the now inoperative Envisat satellite,
scalloping is still a concern for existing SAR systems. Even the Terrain Observation by Progressive Scans
(TOPS) imaging mode, whose design promises to eliminate the azimuth dependence problem, may exhibit
some scalloping caused by electronic beam steering.16 Since scalloping is periodic with a fixed orientation,
frequency (Fourier) domain filtering is a natural choice for descalloping algorithms. As shown in Ref. 3,
however, spectral modifications require much care to avoid secondary artifacts. The main strength of the
composite-transform method is the ease of implementing a filter in the DRT domain. It should also work well
for non-periodic noise, e.g., stripe noise caused by detector-to-detector variations in optical pushbroom-type
systems. Finally, we note that it should be possible to combine the rotation-invariant invertible edge operator
L with other operators, such as generalized Radon transforms that integrate functions on other shapes than
lines.
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