
FFI RAPPORT

DECISION MAKING IN SIMPLIFIED LAND
COMBAT MODELS - On design and
implementation of software modules playing
the games of Operation Lucid and Operation
Opaque

HALCK Ole Martin, SENDSTAD Ole Jakob, BRAATHEN Sverre,
DAHL Fredrik A

FFI/RAPPORT-2000/04403

FFISYS/722/161.3

Approved
Kjeller 15 November 2000

Bent Erik Bakken
Director of Research

DECISION MAKING IN SIMPLIFIED LAND
COMBAT MODELS - On design and
implementation of software modules playing the
games of Operation Lucid and Operation Opaque

HALCK Ole Martin, SENDSTAD Ole Jakob,
BRAATHEN Sverre, DAHL Fredrik A

FFI/RAPPORT-2000/04403

FORSVARETS FORSKNINGSINSTITUTT
Norwegian Defence Research Establishment
P O Box 25, NO-2027 Kjeller, Norway

3

FORSVARETS FORSKNINGSINSTITUTT (FFI) UNCLASSIFIED
Norwegian Defence Research Establishment _______________________________

P O BOX 25 SECURITY CLASSIFICATION OF THIS PAGE
N0-2027 KJELLER, NORWAY (when data entered)
REPORT DOCUMENTATION PAGE
1) PUBL/REPORT NUMBER 2) SECURITY CLASSIFICATION 3) NUMBER OF

FFI/RAPPORT-2000/04403 UNCLASSIFIED PAGES

1a) PROJECT REFERENCE 2a) DECLASSIFICATION/DOWNGRADING SCHEDULE 49
FFISYS/722/161.3 -

4) TITLE
DECISION MAKING IN SIMPLIFIED LAND COMBAT MODELS - On design and implementation of
software modules playing the games of Operation Lucid and Operation Opaque

5) NAMES OF AUTHOR(S) IN FULL (surname first)

HALCK Ole Martin, SENDSTAD Ole Jakob, BRAATHEN Sverre, DAHL Fredrik A

6) DISTRIBUTION STATEMENT

Approved for public release. Distribution unlimited. (Offentlig tilgjengelig)

7) INDEXING TERMS
IN ENGLISH: IN NORWEGIAN:

a) Combat modelling a) Stridsmodellering

b) Game theory b) Spillteori

c) Constraint programming c) Føringsbasert programmering

d) Neural nets d) Nevrale nett

e) Fuzzy logic e) Fuzzy logikk

THESAURUS REFERENCE:

8) ABSTRACT

We present the work done on the stochastic games Operation Lucid and Operation Opaque during FFI project 722,
“Synthetic decision making”. These games, designed as simplified land combat simulation models, are defined and
some of their properties described. We give a theoretical and practical treatment of the problem of evaluating
performance in these games, including mathematically sound performance measures and a successful method for
reducing the effect of stochastic noise in the games. The core of the report consists of a general design based on
constraint programming for software agents playing the games of Operation, and two applications of this design, using
neural nets and fuzzy logic, respectively. The agent design presented is successful in combining the best points of a
brute-force and a more human-like approach to game playing, and makes it possible for software agents to play well in
spite of the very high complexity of the games. The applications demonstrate the practical utility of this design. Special
issues pertaining to the information imperfection of Operation Opaque are also addressed. Some main conclusions of
the work are: 1) Our agent design is useful for applying and combining artificial intelligence techniques. 2) Reinforce-
ment learning algorithms are suitable for learning in this noisy domain, while direct gradient-based parameter
optimisation is not. 3) Representation of domain knowledge can significantly improve performance.

9) DATE AUTHORIZED BY POSITION
This page only

15 November 2000 Bent Erik Bakken Director of Research
ISBN-82-464-0463-6 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
(when data entered)

5

CONTENTS
Page

1 INTRODUCTION 7

2 THE GAME ENVIRONMENT 8

2.1 Operation Lucid 9

2.2 Operation Opaque 10

2.3 Interpretation as Combat Model 10

2.4 The Complexity of the Problem 11

3 EVALUATING PERFORMANCE 11

3.1 Theoretical Performance Measures 12
3.1.1 Geq: Equity Against Globally Optimising Agent 13
3.1.2 Peq: Equity Against Minimax Playing Agent 13

3.2 Estimating Performance by Reference Players 14
3.2.1 Reference Players 15

3.3 Compensating for Randomness 16
3.3.1 Variance Reduction by the Control Variate Method 16

4 A GENERIC PLAYER DESIGN 19

4.1 Two Common Approaches 19
4.1.1 The Constructive Approach 19
4.1.2 The Evaluation Approach 19

4.2 A Modular Mixed Approach 20

5 A MOVE GENERATOR BASED ON CONSTRAINT SATISFACTION 22

5.1 Constraint Satisfaction Problems 23

5.2 Implementation of the Constrained Move Generator 23
5.2.1 Input and Output 23
5.2.2 Formulation of the Constraint Satisfaction Problem 24

5.3 The Constraints 24
5.3.1 Global Constraints: Rules and Heuristics 25
5.3.2 Local Contraints: The Area Language Protocol 26

6 USING THE DESIGN (1): A NEURAL NET AGENT 27

6.1 Constraint Generation 27

6.2 Evaluating Moves by a Neural Network 27

6.3 TD(λ)-learning 28

6.4 Experimental Results 28

6.5 An Improved Constraint Generator 29

7 USING THE DESIGN (2): A FUZZY LOGIC AGENT 29

7.1 The Agent Model 30
7.1.1 Design Principles 30

6

7.1.2 Implementation 32

7.2 Training the Agent 36
7.2.1 Training Method 36
7.2.2 Experimental Results 37

7.3 Discussion 38

8 DEALING WITH IMPERFECT INFORMATION 39

8.1 An Intelligence Module for Operation Opaque 40

9 FUTURE RESEARCH 41

10 CONCLUSION 42

REFERENCES 45

Distribution list 49

7

DECISION MAKING IN SIMPLIFIED LAND COMBAT MODELS - On design and
implementation of software modules playing the games of Operation Lucid and
Operation Opaque

1 INTRODUCTION

This report describes work done by FFI project 722, Synthetic Decision Making, on the games
Operation Lucid and Operation Opaque (11)1. The goal of this activity was to study decision
making in land combat simulation model; these games were defined to represent the essential
parts of land combat modelling, without having to deal with the cumbersome and context-
specific details present in an actual simulation model. The choice of representing the combat
situation by games – more specifically, by two-player zero-sum games – was motivated by the
characteristics of such a situation. In most land combat models there are two opposing sides
(hence we use two-player games) having no common interest and no incentive to co-operate
(hence zero-sum games).

Given this simplified representation of the problem, the problem of modelling decision making
turns into the problem of constructing software agents that play the game by observing and
acting on the environment. For our modelling purposes, the goal is to construct players that
behave like humans do. In general, this is not necessarily the same as behaving “rationally” (in
some sense of the word). However, certain properties of games like Operation are such that
humans generally play them quite well, at least better than computers. Thus, for the task of
constructing Operation-playing software agents, optimising performance can be seen as
roughly equivalent to mimicking human game-play.

From the start of artificial intelligence research, game playing has been much studied. Russell
and Norvig suggest that “[w]e might say that game playing is to AI as Grand Prix motor racing
is to the car industry [...]” (26, p. 141) – implying that game playing is a leading-edge activity
within AI, but that the results and solutions from these abstract settings may not always
generalise well to real-world problems.

Generally speaking, we can discern a difference between how humans and machines usually
play games. Humans tend to plan towards a goal and construct their moves according to this
(26, p. 140), while computers evaluate all available options. The former approach is often
associated with “intelligence” as we normally use the term; it requires semantic understanding
of the domain, and is difficult to implement well in a computer program. The latter approach
requires less previous knowledge, but is usually prone to problems related to computational
complexity.

In computer game-play, evaluation is often done by search in game trees – most game-playing
research concentrates on this (see e.g. (26, Chapter 5) and the references therein). This is due
to certain properties common to most of the games usually studied. In particular, these games

1 In the following, these games will sometimes jointly be called simply “Operation”.

8

have trees with a branching factor that is not too large (in chess rarely over 100, for instance);
consequently it is feasible to enumerate all legal actions in a given game state and, given
efficient pruning methods, to look several moves into the future. This property may be part of
the reason why results from AI research in games does not necessarily translate directly to
more practically useful knowledge – in the real world, the number of choices may be much
greater than is usual in a game. Thus, at the risk of offending avid players of these games, they
may often be said to be “toy problems” in the context of real-world applications.

This paper, on the other hand, deals with a game designed to model essential parts of a
complex real-world situation; the branching of the game tree is consequently very large – up to
the order of 1010. In most game states, the number of legal moves is thus far too large to
enumerate exhaustively. In addition to this, the sequence of moves is stochastic, in the sense
that it is not known which player gets to move in the next turn. Due to these properties, game-
tree search is not applicable to our game, as it is infeasible to build even the first two levels of
the game tree. Nevertheless, a division into two general approaches, similar to that mentioned
above, is applicable to the problem of selecting which move to make. The central chapters of
this report present a design for a game-playing agent which combines the strong points of these
two approaches while attempting to diminish the drawbacks of each of them. This design is
centred about the formulation of the problem as a constraint satisfaction problem (CSP), and
the application of constraint programming for solving this problem – see (4) for a review of
this field. Constraint programming has proved to be a very useful building block when making
game-playing agents for Operation; as we shall see, it facilitates the use of other AI methods –
and combinations of AI methods – in the building of agents playing our games.

The report is organised as follows. Chapter 2 is dedicated to the definition, interpretation and
complexity of the problem environment – the games of Operation Lucid and Operation
Opaque. In Chapter 3, we give a theoretical and practical exposition of the evaluation of agents
playing (zero-sum) games in general and Operation in particular. Chapters 4 and 5 are the core
chapters in this report2: Chapter 4 treats the overall design of our game-playing agents, while
Chapter 5 gives a more detailed view of our use of constraint programming in this design. In
Chapters 6 and 7 we describe actual agents for Operation Lucid that have been built using the
design presented in Chapters 4 and 5. Chapter 8 deals with the special challenges presented by
the imperfect information of Operation Opaque, while further research and conclusions are
treated in Chapters 9 and 10.

2 THE GAME ENVIRONMENT

Our goal is to construct game-playing software agents. Such an agent should be able to get a
game state as input, and, from this state and the rules of the game, generate a single move as
output. The move describes where each of the agent’s own pieces should be placed when the
turn is finished. In this chapter we present the problem environment – the games of Operation
Lucid and Operation Opaque – and describe some of the properties that make them both
interesting and very challenging. More information on Operation can be found in (11).

2 A version of these chapters, along with Chapter 6, has been previously published (30).

9

2.1 Operation Lucid

In short Operation Lucid is a two-person stochastic board game where the two players start off
with their pieces in opposing ends of the board (Figure 2.1). All pieces of one side are
equivalent, and therefore indistinguishable from each other except by their locations on the
board. One player, named Blue, is the attacker. Blue starts the game with fifteen pieces; his
aim is to cross the board, break through – or evade – his opponent’s defence, and move his
pieces off the board into the goal node. The defending player, Red, starts with ten pieces; his
task is to hinder Blue from succeeding. The result of the game is the number of pieces that
Blue has managed to get across the board and into the goal node; thus, there is no “winner” or
“loser” of a single game – the result is a number ranging from 0 to 15. The rest of this section
contains the rules of the game.

The game of Operation Lucid is played in 36 turns. At the start of each turn, the right to move
pieces is randomly given to either Blue or Red, with equal probabilities. The side winning this
draw is allowed to move each piece to one of the neighbouring nodes (that is, a node that is
connected to the piece’s current node by an edge) or leave it where it is. The side losing the
draw, of course, does not get to move any pieces in that turn.

The movement of the pieces is subject to these restrictions:
• When the move is finished, no node can have more than three pieces of the same colour.
• Pieces cannot be moved from nodes where the player is defined as the attacker (see below).
• Blue cannot move out of the goal node.

1

2

3

4

5

A B C D E

Blue goal node

15 Blue pieces

10 Red pieces

 N

Figure 2.1 The initial set-up for Operation

10

Whenever Blue and Red pieces are in the same node at the end of a turn, combat ensues, and
one of the pieces in that node is lost and taken out of the game. A weighted random draw
decides which side loses a piece. In a node having combat, the player last entering is defined as
the attacker of that node, while the other part is defined as the defender of the location. The
weighted random draw is specified by the probability that Blue wins, which means that Red
loses a piece. This probability is given by the fraction

(Blue strength)/(Blue strength + Red strength),

where a player’s strength in a node equals the number of own pieces in that node, modified in
accordance to two rules. Firstly, the defending part in the node gains one extra point of
strength. Secondly, if the Blue player does not have an unbroken path of nodes with only Blue
pieces leading from the combat node to one of Blue´s starting positions (a supply line), Blue
loses one point of strength.

The game ends when the 36 turns are completed, or when Blue has no pieces left on the board.
The result of the game is the number of Blue pieces that have reached the goal node.

2.2 Operation Opaque

The rules of Operation Lucid all apply without modifications to the game of Operation
Opaque. The difference between the two games lies in the information presented to the players
during the game. In Operation Opaque, enemy pieces are invisible to each player, except for
pieces in the same node as or in nodes adjacent to any of the player’s own pieces. Thus, Blue
(say) only sees Red pieces in nodes that are at most one edge away from his own pieces
(regardless of whether the Blue pieces can actually be moved or not). The goal node is not
subject to this rule; Red always knows the number of Blue pieces in the goal node, while Blue
pieces in the goal node do not yield information on Red pieces in the northernmost row of the
board. Both sides at all times know the number of remaining Blue and Red pieces on the
board.

Information is presented both before and after combat is resolved. Thus, if a player uses his
turn to move a single piece into combat, the player does get information on enemy pieces in
the nodes adjacent to the node he has just moved into. If the piece is destroyed in the ensuing
battle, the player does not see these pieces any more (though, of course, he knows they are still
there until his opponent has made a move).

2.3 Interpretation as Combat Model

The games of Operation have been designed to capture important aspects of military ground
combat modelling; in particular, they represent a scenario where the goal of one side is to
break through enemy defence to reach a certain location. Movement of the pieces on the board
naturally represents the movement of force units in a terrain; the stochastic ordering of Blue
and Red moves is intended to capture the uncertainty inherent in manoeuvring in possibly
unfamiliar territory.

11

The rules for determining the result of combat naturally take into account the numerical
strength of each side in the area of combat. In addition, they represent the advantage of being
the defender of a location; this advantage is due to the defender’s opportunity to prepare
himself and the environs for resisting attacks. The rule regarding Blue supply lines models the
effects of logistics; an invading force will need a functioning line of supplies back to his home
base to be able to perform well in enemy territory.

In Operation Opaque, the rule restricting a player’s view of the opponent’s pieces is intended
as a simplified representation of lacking information on the whereabouts of enemy forces.
Also, the fact that pieces of one colour are indistinguishable assumes special importance in
Operation Opaque, and reflects the problem of identifying an enemy unit when it has been
detected.

2.4 The Complexity of the Problem

A seemingly obvious way of playing Operation is by evaluating (in some way) each legal
move in the current game state, and then choosing the one with the best evaluation. This would
reduce the problem of constructing a player agent to the problem of evaluating moves in given
game states. This method is generally not feasible, however, as the number of possible moves
in each state tends to be huge. A player may allocate one of at most five actions (stand still or
move in either of four directions) to each of at most fifteen pieces, so an upper bound on the
number of legal moves is 1015 1035 ⋅≈ . If we assume that a computer generates one thousand
possible moves each second (a reasonable assumption according to our experiences), it might
take up to year to enumerate all legal moves in one state.

In typical game states the number is usually far lower than this – the player may have fewer
than fifteen pieces left, and each of the pieces may not be free to perform all five actions. Also,
a lot of the legal moves are equivalent, as all pieces of the same side are interchangeable. From
the initial position, for instance, the number of possible non-equivalent moves for Blue is
60,112 (disregarding equivalence by symmetry). In intermediate states of the game the number
of legal moves increases quickly, and is generally far too large for an exhaustive enumeration.
Thus, we need a player design that is not based on brute-force evaluation of all alternatives.
In Chapter 4 of this report, we present such a design.

3 EVALUATING PERFORMANCE

In this chapter, we discuss the matter of evaluating the performance of agents playing
Operation. In order to place our discussion on a game-theoretically sound basis, we start by
defining some theoretical performance measures. The complexity of Operation prevents us
from using these measures directly; consequently, we need a way of estimating the true
performance of our agents by actual game-play. In addition to describing the opponents we use
for this estimation, we also present a method for diminishing the variability of the outcomes of
single games caused by the randomness inherent in the game. For more information on
evaluation of game-playing agents, see (14).

12

3.1 Theoretical Performance Measures

We view the games of Operation as zero-sum games, that is, games where one side loses what
the other side wins. Specifically, we think of the result that n Blue pieces reaches the goal node
as Blue winning a utility value of n from Red. In this case, Blue’s utility from the result is n,
while Red’s is –n. Under these assumptions, the minimax theorem of game theory – see e.g.
(21) – implies that for each of the games, there exists a so-called minimax strategy for each of
the players. This is a pair of strategies with the property that neither of the players can benefit
from changing strategy. The expected Blue score when these strategies are used is called the
value of the game. Consequently, the value is the maximum expected score that Blue can
guarantee, and the lowest expected Blue score that Red can guarantee.

Some words need to be said about the concept of “strategy” in the previous paragraph. Here,
the difference between Operation Lucid and Operation Opaque – that one is perfect-
information and the other imperfect-information – is essential. In Operation Lucid, there is no
need for either player to act randomly, as all actions are immediately revealed to the opponent.
Thus, a strategy for a player is a mapping assigning a single move to every possible game state
in which this player has the turn. In Operation Opaque, random actions are necessary for
optimal play; this means that a strategy is a mapping assigning a probability distribution over
the set of legal moves to every game state. In this case, the expectation of the score in a game
between two strategies is taken both over these probability distributions and over the random
draws in the game. In practice, of course, strategies are not explicitly represented as mappings
from game states to (probability distributions over) moves; these mappings are implicitly
represented through the actual (possibly random) behaviour of the game-playing agents.

The games of Operation are not symmetric, as the sets of possible strategies are different for
Blue and Red agents. If we were to demand that an agent should be able to play both Blue and
Red, however, we could make the game symmetric. This could be done by defining a full
game between two agents as a pair of single games, with each agent playing Blue once and
Red once, and summing the results. We would also need a random draw to decide which agent
should play which side first. This redefined game is also clearly zero-sum, and the
symmetricity guarantees that its value is zero. As most of our agents have been designed to
play one side only, we will not follow this procedure here.

Our goal of making agents that play well in the game-theoretic sense deserves some
justification, especially as some of our research in the game of Campaign indicates that
humans do not necessarily act the way game theory predicts that rational agents should act (1).
However, the main source of complexity in that game is of a kind that humans in general do
not handle well. The complexity in Operation, on the other hand, the main kind of complexity
is such that humans in general outperform computers. Consequently, we conjecture that the
correspondence between game theory and good human play is high in Operation, especially
Operation Lucid. For more on different types of complexity see (10).

In the following, we describe the performance measures from the point of view of each side.
The set of possible Blue strategies will be denoted by B, and that of Red strategies by R. The

13

function []15,0: →× RBE gives the expected result when agents using strategies in B and R
play against each other.

3.1.1 Geq: Equity Against Globally Optimising Agent

The first criterion we present is that of equity against globally optimizing agent, abbreviated
Geq. The Geq measure gives the expected outcome for a strategy when playing against the
opposing strategy that is most effective against it. Thus, for a given Bb ∈ it is defined as

)}.,({inf)(rbEbGeq
Rr∈

=

Correspondingly, Geq for a given Rr ∈ is

)},({inf)(rbErGeq
Bb

−=
∈

– since Red’s goal is to minimise the outcome. In a game with value v for Blue, it is clear that
vbGeq ≤)(for all Bb ∈ and vrGeq −≤)(for all .Rr ∈ The strategy b is a minimax strategy

if and only if ,)(vbGeq = the strategy r if and only if .)(vrGeq −=

An equivalent way of understanding the Geq measure is as the expected outcome of players
when playing against a hypothetical benchmark agent that always knows and exploits the
strategy of its opponent – that is, a globally optimising agent. Of course, such an agent, which
maximises its payoff against an arbitrary opponent, cannot belong to B or R, as it requires
information on its opponent as well as on the game state.

The Geq criterion is very strict. Its “knowledge” about the player’s strategy can be utilised in
ways that seem quite unfair, such as using inferior moves to lead the player into states where it
has a weakness. Consequently, this criterion may give very low values even for apparently
reasonable players, especially in complex games.

3.1.2 Peq: Equity Against Minimax Playing Agent

A weaker criterion than Geq is that of equity against minimax playing agent, or Peq (the “P”
indicates “perfect play”). It is defined as the expected outcome of a player when playing
against an agent which follows a minimax strategy. Thus, if Rr ∈* plays according to a
minimax strategy, Peq for a player Bb ∈ is

*),,()(rbEbPeq =

and if Bb ∈* plays a minimax strategy, Peq for a Red strategy r is

).*,()(rbErPeq −=

As the minimax player by definition is guaranteed to do as well as possible against its most
dangerous opponent, it follows that vbPeq ≤)(and .)(vrPeq −≤ If the agent being evaluated
itself plays a minimax strategy, the Peq criterion takes the value of the game (v for a Blue and
–v for a Red strategy). However, the implication is not reversed: a sufficient condition for

14

achieving (say) vbPeq =)(is that b’s mixed strategy does not include any pure strategy absent
from the minimax strategy. Consequently, mixture of pure strategies is not required: any pure
strategy represented in the minimax strategy will have a Peq equal to the value of the game.
This in turn means that the Peq measure is too weak to be of much use in imperfect-
information games, where minimax strategies are generally necessary. An additional
disadvantage with this criterion is that in a game with multiple minimax strategies, the Peq
values depend on the strategy selected for b* or r*.

While Geq represents the ultimately devious opponent, Peq corresponds to an opponent that
plays perfectly in a more defensive way. It never makes any errors and, while punishing
inferior pure strategies, never exploits biases in the opponent’s strategy mixture. It is clear
from the definitions of Geq and Peq that)()(sPeqsGeq ≤ for any strategy .RBs ∪∈

Most of the preceding remarks pertain mostly to imperfect-information games, such as
Operation Opaque. In Operation Lucid, mixture of strategies is never necessary due to the
perfect-information properties of the game.

3.2 Estimating Performance by Reference Players

The problem with the performance measures defined in the previous section is that they cannot
be calculated except in games for which the solution is known. Both varieties of Operation are
clearly far too complex to be solved. What, then, is the use of these measures – is it not more
natural to measure performance by how agents succeed in actual game-play?

The answer is that this is exactly what we do. However, game-play on its own can also be a
misleading guide to true playing strength in the game-theoretic senses defined above. In fact, it
is often possible that agents may outperform each other in circle, even in the long run. In this
case, it is impossible to rank them in a consistent manner by playing them against each other.
The usefulness of the theoretical measures is then as guides to what kind of agents we should
use as opponents for the agents to be evaluated.

To estimate the Peq ability of agents well by using a benchmark opponent, we would need an
agent that plays the solution, or at least plays sufficiently like the solution to rank its opponents
correctly. As our goal in the first place is to make agents that plays strategies close to the
solution, this is clearly not feasible in any strict sense. Nevertheless, by making reference
opponents that play according to the principles of minimax strategies as much as possible, we
can hope that these will establish an ordering of agents that corresponds reasonably well to
their Peq ranking.

The task of estimating the Geq measure is even harder. Actually trying to find the most
effective counter-strategy against each agent is clearly too demanding, especially when we
want to evaluate a multitude of agents. Making a globally optimising agent, that is allowed to
peek into any opponent’s strategy and use this information to exploit its weaknesses, is even
worse – indeed, it is far more difficult than our original task. A possible approach that is
feasible to implement, and which we may hope captures some of the strictness of the Geq

15

criterion, is to play our agents against a diverse suite of reference opponents, and evaluate
them by the score against its most effective opponent.

We implemented a number of simple benchmark players, both for Blue and Red, to act as
evaluators for our more complex agents. These reference agents are described in the following.

3.2.1 Reference Players

The simplest players we implemented – one Blue and one Red, called SimpleBlue and
SimpleRed respectively – were made primarily as an exercise in using the software
environment. The Blue agent moves every piece north that can be moved north at every turn it
wins, while the Red one does nothing but stand still.

Of course, these agents do not play very well by any standard. The Blue player spreads its
forces in a way such that every piece is at great risk of being lost in battle, while the Red
player never fills holes that might arise in its line of defence. Clearly, we require more sensible
behaviour than this for evaluation, so we implemented other, still rather simple, agents for this
purpose. These agents, one Blue and two Red, are now described in short.

OneAxisBlue:
This Blue agent initially decides on an axis along which to conduct its attack. At its turn, all
movable Blue pieces on this axis are pushed forwards, while pieces on other axes are moved
towards the attack axis as much as possible – this can clearly only happen on the southernmost
row. The strength of this agent lies in its concentration of forces, its weaknesses in the fact that
it does not keep a supply line for long, and also that it does not try to evade the defence.

AxesExpRed:
Like the SimpleRed agent, this agent always keeps its pieces on the northernmost row. It is
more advanced is in its sideways movements, however, as it seeks to place its pieces where the
Blue threat is greatest. For this purpose, it calculates a threat for each of the five northern
nodes, which for a given node is a weighted count of the Blue pieces present on that axis. The
weights reflect how close the threat is, and are set to 5 for the northernmost row, 4 for the next
row, and so on, counting down to 1 for the southernmost row. The agent then attempts to
distribute its own pieces on the five axes in a way mirroring the perceived threat. An exception
to this rule occurs if there is combat going on the northernmost row. In this case, a simple
expert system, made using the ExperTalk framework (2), is used to prevent moves that are
clearly disadvantageous for Red’s performance in the combat.

DistExpRed:
This agent is identical to AxesExpRed, except for the way in which the threats to the five
nodes are calculated. Here, the threat posed to a given northern node by a given Blue piece on
the board is ,/1 2d where d is the length of the shortest path from where the Blue piece
currently is, through the node we are calculating the threat for, to the goal node. The sum of
contributions like this from all Blue pieces on the board – except from those that are in other
nodes on the northernmost row – is taken to be the threat to the node in question. Thus, all
Blue pieces on the four southern rows contribute to all the threat estimates. The point of

16

calculating threat in this way is to allow for the risk that Blue may manoeuvre in order to
evade the defence – in contrast, AxesExpRed does not attempt to cover an axis before there is
actually a Blue piece on it.

3.3 Compensating for Randomness

In addition to the problems with estimating performance addressed in Section 3.2, there is the
added complication of the random draws made during the game, both in deciding whose turn it
is and in resolution of combat. These draws may have a large impact on the score in each
game. Consequently, it is necessary for any pair of agents to play a number of games in order
to get a good estimate of the expected outcome. The number of games needed for a reasonably
accurate estimate of expected outcomes in Operation may be inconveniently large; this section
describes a method for reducing the number of games required for a given required accuracy.

3.3.1 Variance Reduction by the Control Variate Method

The basic idea for reducing the random noise in the game outcomes is to estimate the influence
that the distribution of “luck” between the players has had on the outcome, and adjusting the
outcome according to this estimate. Formally, if we let Y be the outcome of a game and l our
estimate of the advantage (positive or negative) that Blue has had due to the random draws in
the game, the adjusted outcome is .~ lYY −=

When we play two agents B and R against each other, the expected outcome),(RBE is what
we are trying to estimate. If the adjusted outcomes Y~ are to be of any use, we therefore require
that),()~(YEYE = which means that we need estimates l with the property .0)(=lE Here, we
define an estimator with this property, based on linear regression.

The two kinds of random draws in Operation are those that decide whose turn it is next and
those that determine who loses a piece in a combat node. The assumption behind our simplest
estimator is that a large part of the variance in the game outcomes can be described as a linear
function of two variables describing the aggregated advantage Blue has had during a game
with respect to these two kinds of draws. Thus, we use the model

ε+++= CaDaaY CD0

– where D represents the luck Blue has had in the draws for turns and C his luck in the combat
draws, the a’s are the coefficients of the linear function, and ε is an error term. The adjusted
outcome of the game is then set to

.~ CaDaYY CD −−=

If we construct D and C such that ,0)()(== CEDE this estimator will then be unbiased.
Since both sides always have equal probability of winning a turn, this is fulfilled for D if we let
it be equal to the total number of turns Blue has won throughout the game, minus the number
of turns Red has won. The case of C is a little more complex, as the probabilities of Blue
winning is usually different from ½. If we denote the outcome of a combat draw by },1,0{∈k

17

where 1=k if Blue wins the draw and 0=k otherwise, and we let)1,0(∈p be Blue’s
probability of winning the draw, then pk − is our estimate of Blue’s luck. Since

,0)1()1()0()0Pr()1()1Pr()(=−−−=−⋅=+−⋅==− pppppkpkpkE

C is unbiased if we let it be the sum of the pk − values for all the combat draws in the game.

The question now is how to find the values of Da and .Ca We could use a set of reference
agents and use linear regression to determine Da and Ca once and for all. Although the lack of
bias ensures that the expected mean of the adjusted scores would be correct in this case, we
would have no guarantee that the variance was actually reduced. This is because just as the
expected outcome of a game depends on the agents that are playing, the influence of the draws
on the results may also depend on the actual agents used.

A mathematically sound way of determining Da and Ca for a given pair of players who have
played N games is to run a new regression for adjusting each game, where only the other 1−N
games are used as data for the regression analysis. When the number of games grows large,
however – as it does when we need high accuracy in our score estimates – this approach
requires a correspondingly large number of regression analyses. Also, with a large number of
games, the error caused by statistical dependency if we simply use all games both for
regression and expected score estimation becomes negligible (24). Consequently, this latter
method, though erroneous in principle, was adopted as sufficient for our purposes.

The simple model above assumes that winning a draw of a given type is equally useful in any
board state, an assumption that is clearly not realistic. Therefore, we extended the model by
adding four new random variables, with corresponding coefficients, intended to capture the
relative importance of draws.

One of the additional variables, ,)(SD measures the amount of luck Blue has had in
particularly significant turn draws. These significant turn draws occur when Blue has pieces in
the northernmost row. These draws may be particularly important for the outcome, as they can
determine Red’s chances of destroying Blue pieces before they reach their goal. For each of
the five northernmost nodes, let nodes be the product of the number of Blue pieces in that node
and the number of Red pieces in its two neighbouring nodes. If we let iD be the luck
associated with a single turn draw, so that iD is 1 if Blue wins the turn and –1 if Red wins it,
then iii

S DSD =)(, where iS is the sum of the five nodes values.)(SD is then the sum of all the
i

SD)(’s throughout the game.

The other three new variables measure combat luck in specific situations. All of these are
similar to ,)(SD as for each draw they are multiples of the basic combat luck variable. One,

,)(SC is somewhat parallel to ;)(SD the multiplier in this case is the total number of pieces in
the combat node if it is on the northernmost row, and zero otherwise. For the variable ,)(BC
the multiplier is simply the number of Blue pieces remaining on the board. Finally, the variable

)(GC captures the fact that the importance of a combat draw depends upon the chances the

18

Blue pieces have of reaching the goal node before 36 turns have passed and the game is over.
If Blue is the attacker in a combat node, all Red pieces must be defeated before Blue can exit
the node; consequently the number Gn of moves needed to reach the goal equals the sum of
the distance to the goal and the number of Red pieces present. (It is assumed that Red neither
exits the node himself, nor reinforces the node with additional pieces, making Blue the
defender.) The multiplier for this variable is set to zero if Gn is greater than the number ln of
remaining turns, and to lG nn /1− otherwise.

Since, for a given draw, each of these multipliers has a constant value, and the expected value
of the contribution of the draw to D or C is zero, the additional variables defined here will
fulfil the no-bias requirement.

As mentioned, the usefulness of these models for variance reduction may depend on the actual
players involved. Table 3.1 shows the estimated means along with standard deviations for the
agents described in Section 3.2.1, in the three cases of no variance reduction, the simple
regression model and the expanded model. For each pairing, 100 games were played.

Var. red. SimpleRed AxesExpRed DistExpRed
None 4.39 (0.26) 4.52 (0.30) 3.78 (0.29)

Simple 4.21 (0.09) 4.11 (0.11) 3.86 (0.09)SimpleBlue
Expanded 4.21 (0.05) 3.98 (0.08) 3.95 (0.07)

None 12.76 (0.28) 4.89 (0.33) 5.50 (0.34)
Simple 12.75 (0.06) 5.21 (0.13) 5.37 (0.14)OneAxisBlue

Expanded 12.78 (0.06) 5.31 (0.10) 5.34 (0.11)

Table 3.1 Estimates of expected outcomes, with standard deviations in parentheses,
without and with variance reduction

Table 3.2 shows the factor by which the number of games would have to be increased to
achieve the same standard deviation, for the following three cases: no variance reduction
compared to the simple model, no variance reduction versus the expanded model, and the
simple model compared to the expanded model.

Comparison SimpleRed AxesExpRed DistExpRed
None vs simple 8.4 7.0 9.8

None vs expanded 23.4 13.8 17.9SimpleBlue
Simple vs expanded 2.8 2.0 1.8

None vs simple 20.2 5.9 5.8
None vs expanded 24.7 10.4 10.2OneAxisBlue

Simple vs expanded 1.2 1.8 1.7

Table 3.2 Multiplicative effect of variance reduction on the number of games necessary for
a given standard deviation

The table shows clearly how the effect of the variance reduction varies between pairs of
players, although it should be noted that the two “simple” agents are rather trivial, and may not
yield very interesting results. Still, it is clear that compared to the relatively low cost of

19

running the variance-reducing algorithms, the gain from using these methods – especially the
more complex one – is considerable.

For further reading on variance reduction by control variates, see for instance (24).

4 A GENERIC PLAYER DESIGN

As mentioned in Chapter 1, we can identify two general ways for an agent (human or machine)
to select moves in games, which we may call the constructive approach and the evaluation
approach. These approaches, in their pure forms, are both seen to be inappropriate when
considering our problem, that of playing Operation Lucid. The main contribution of this
chapter and the next is a mixed approach that combines these approaches by utilising the
valuable properties from each. This approach allows us to create agents that play the game
efficiently.

4.1 Two Common Approaches

This section describes the constructive approach and the evaluation approach to game playing,
along with their advantages and disadvantages when applied to our problem.

4.1.1 The Constructive Approach

In each state, an agent using the constructive approach forms its next move constructively
according to the state and the rules of the game. Typically, this is done by associating actions
to properties of the state, or by defining goals and selecting moves which are seen as leading to
these goals. This is how humans typically think when playing games of the same class as
Operation Lucid (26, p. 140). An example of a constructive software agent is an agent using an
expert system for inferring its next action from the current game state.

An advantage of this approach is that it reduces the complexity of the decision-making
process: there is no need to consider all possible actions in a given state.

The main disadvantage is that the complexity of the domain itself makes it difficult to define
rules or goals with sufficient power of expression to achieve high-performance game play.
Obviously it is quite challenging to utilise the potential of the huge set of alternative decisions,
without addressing the complexity of this decision situation. Thus, constructive agents may
typically behave vulnerably, by playing revealing and rigid strategies.

4.1.2 The Evaluation Approach

In its pure form, the evaluation approach is based on evaluating (in some way) all possible
actions in each game state the agent encounters, and choosing the action with the highest
evaluation. To achieve this, the agent initially performs a search, which generates all possible
actions. This search is defined by the current state and the rules of the game. Having the
actions at hand, an evaluator assesses them in accordance with some criterion, and the action
that is seen as the best one is chosen.

20

This basic form of the evaluation approach is illustrated in Figure 4.1. The Move Generator
constructs the set of legal actions using the current situation and rules of the game. The Move
Evaluator then evaluates these actions according to certain criteria, and the action with the best
evaluation is chosen.

Game rules Game state

Move Generator

Move Evaluator

The best move

All legal moves

The evaluation approach agent

Figure 4.1 Design for an agent using the evaluation approach

This approach, in a more sophisticated form, is often used by computer programs playing
games with a reasonably small number of legal actions – chess is a well-known example of
such a game. If a large number of possible actions need to be generated and evaluated in each
game state, this approach becomes infeasible. As mentioned in Section 2.4, the number of
possible actions in a given Operation game state can be of the order 1010, which makes a pure
evaluation-based approach too expensive.

On the other hand, the design shown in Figure 4.1 has the advantage of being modular. The
agent is decomposed into a module generating the set of moves to be evaluated and a module
performing the evaluation itself. Due to this modularity, the agent development is simplified –
changing the implementation of one module does not affect the other. If we want to
experiment with different designs for one of the subtasks, this is a valuable property of the
evaluation approach.

4.2 A Modular Mixed Approach

In designing an agent for playing Operation Lucid, we wish to exploit the desirable properties
of each of the basic approaches mentioned, that is, the complexity reduction of the constructive
approach and the modularity and expressivity of the evaluation approach. Our solution is to
use the evaluation approach as a starting point, but limiting the set of actions generated. This is

21

achieved by splitting the move generator of Figure 4.1 into two parts: a Constraint Generator
(CG) that constructively generates a high-level description of the moves to be generated, and a
Constrained Move Generator (CMG) that generates the set of moves fitting this description.
The Move Evaluator (ME) is retained. This design is shown in Figure 4.2.

Constraint
Generator

Constrained
Move Generator

OK

A move

Fuzzy logic,
Expert system,
Genetic algorithms
Neural network,
. . .

Game state

{ Constraints }{ Generated
 moves }

{ Generated moves }

Move
Evaluator Fuzzy logic,

Expert system,
Genetic algorithms
Neural network,
. . .

State and
rules of game Constraint Programming

Figure 4.2 Design for an agent using a mixed approach

When the agent in Figure 4.2 is to perform an action, it takes the current game state as its
starting point. The CG uses some AI method (as indicated in the figure) to make a set of
constraints describing the kind of move it sees as appropriate. The CMG receives these
constraints, and generates the complete set of legal moves in accordance with the game rules,
the situation description and the constraints from the CG. It then sends this set back to the CG.
This feedback allows the CG to check its constraints, and modify them if necessary. If, for
instance, the constraints were too strict, so that no legal action exists, this test would force an
easing of constraints.

When the CG has accepted the CMG actions, the generated moves are sent to the ME. The ME
evaluates each of the candidate actions. The evaluation criterion can be anything from simple
heuristics to an advanced AI technique. The output of the agent is the move that is given the
highest score.

In this design, a game-playing agent consists of separate modules that may be implemented
using different techniques. Thus, the design enables hybrid implementations of agents.

Note that the two common approaches mentioned earlier are included in this general design. If
the CG generates a set of constraints describing one single move in detail, only this move will
be generated by the CMG, and the ME is made redundant. This amounts to a purely

22

constructive approach. If, on the other hand, the only constraints received by the CMG are
those describing the rules of the game, all legal moves will be generated, and we have the pure
evaluation-based approach.

As seen from Figure 4.2, applying our design for making an agent calls for the implementation
of three modules: the constraint generator, the constrained move generator and the move
evaluator. The design obviously does not specify in detail how the CG should act or how the
ME should evaluate the moves – these are precisely the tasks which we are interested in
studying when creating game-playing agents, and various techniques should therefore be
examined. On the other hand, the task of the CMG is fully specified, given a well-defined
language for specifying constraints. This task can be formulated as follows: Generate all legal
moves satisfying the constraint set received from the CG. The fact that the task of the CMG is
fully specified leads us to the conclusion that only the efficiency of performing this task
separates between CMGs. Thus, provided that we are able to find a sufficiently efficient
implementation of this module, we only need one CMG common to all agents we create. The
implementation of an efficient CMG module is the subject of Chapter 5.

5 A MOVE GENERATOR BASED ON CONSTRAINT SATISFACTION

The modular mixed approach still presents a potential complexity problem: How is the
constrained move generator supposed to decide which actions fit the high-level description
from the constraint generator – the constraint set – without generating and testing all possible
actions? Here we have found constraint satisfaction problems (CSP) – see e.g. (12) or (35) – to
be a very useful framework.

The task of generating all possible moves can be seen as traversing a search tree, where each
leaf node corresponds to a legal action. As the number of legal actions is very large, standard
search strategies like breadth-first and depth-first are inappropriate in this context, as these
strategies visit every node of the search tree. The point of using algorithms solving the CSP is
that branches of the tree are cut as soon as a constraint is violated, thus making search feasible.

Despite cutting branches of the tree, the complexity of CSP algorithms can be huge, depending
upon the size of some critical parameters – in our problem, the number of pieces is the most
significant parameter. In fact, CSPs include as a special case the well-known NP-complete
problem 3SAT (26, p. 84), and we can not expect to do better than exponential complexity in
the worst case. However, in our context, the significant parameters affecting the complexity of
the CSP are bounded, and therefore the complexity is also limited. Still, depending upon the
size of our actual parameters, the actual CSP formulations may be quite complex and fast
executions of the search are not always to be expected.

In the following section, a general description of CSP is given, before we return to the
description of the CSP-based constrained move generator module.

23

5.1 Constraint Satisfaction Problems

A constraint satisfaction problem is basically a problem formulation involving a set of
variables and a set of constraints, where the constraints define the solution space by means of
dependencies between subsets of the variables. The variables are usually defined to have finite
domains. A solution of the problem is an assignment of a value to each variable, such that no
constraints are violated. Algorithms for solving CSPs typically work by sequentially assigning
values to the variables and checking for violations of the constraints.

This general solution method outlined above has been refined in algorithms such as forward
checking (15) and maintaining arc consistency (27). Many specific algorithms and applications
have been devised within problem domains such as scheduling (25), vehicle routing (8) and
timetabling (20); a survey of constraint satisfaction algorithms is given in (19).

5.2 Implementation of the Constrained Move Generator

We now describe how we have applied constraint satisfaction methods to the problem of
generating the set of legal moves satisfying a set of constraints from a constraint generator.
We start by describing the input and output of the constrained move generator, and proceed to
show how the task of the CMG is framed in CSP terms – that is, how the variables and
constraints are defined.

5.2.1 Input and Output

The input to the CMG consists of three parts: the constraint set created by the constraint
generator (see Figure 4.2), the rules and the current state of the game. The constraint set and
constraints are described in more detail in Section 5.3; in particular, Section 5.3.2 defines a
protocol the CG uses for communicating a part of the constraint set to the CMG.

Due to the perfect-information property of Operation Lucid – both players know the full state
of the game at all times – it is not necessary to include the history of the game in the state
description. The state description comprises the position of each piece on the board (including
Blue pieces in the goal node), the number of remaining turns, and which side was the last to
enter each combat node.

The output of the CMG module is a set of moves. This set represents a subset of the set of all
possible moves in the current state – those that satisfy the constraint set. The format of a move
is a list of two-tuples. Each tuple describes how one piece is moved, by giving the names of
the current node and the one to which the piece is to move. For instance, moving all Red
pieces forward from the starting position (see Figure 2.1) is formulated as

() () () () () () () () () ()().4,5,4,5,4,5,4,5,4,5,4,5,4,5,4,5,4,5,4,5 EEEEDDDDCCCCBBBBAAAA

Consequently, the output of the CMG module is a set of lists, each lists having the format seen
above.

24

5.2.2 Formulation of the Constraint Satisfaction Problem

Now we describe how the problem of generating the moves is formulated as a constraint
satisfaction problem. Referring to the description of CSPs in Section 5.1, we note that we need
to define the variables of the search, the (finite) domains of the variables, and the constraints.
The constraints are described in detail in Section 5.3 and will not be commented on here.

We associate one variable to each of the agent’s own pieces still on the board, excluding those
that have reached the goal node. Each of these variables has a domain consisting of the five
values north, south, east, west, and remain. Thus, the values of a variable correspond to the
actions available to the piece in a single move.

The goal of the CSP solution search is to find all ways each variable can be assigned one of the
five values, so that the constraints from the CG are satisfied. Using the search tree
interpretation in the introduction to this chapter, we see that a node at depth k in the search tree
corresponds to an assignment of movements to k pieces. It follows that the search tree for Blue
(Red) is of depth 15 (10) at the start of the game, before any pieces are lost through combat or
safely in the goal node.

Having framed our problem as a CSP search, standard techniques for solving CSPs can be
applied. We have chosen to use a commercial software product for this task, namely the C++
library ILOG Solver, version 4.4 (17).

5.3 The Constraints

The main reason for using constraint programming in this game application is the size of the
search space. The main effect of the constraints should be to reduce the search space
substantially. How efficient a constraint or combination of constraints “cuts” the search space
is not well known before the search is actually done – sometimes the reduction may fail so that
the search has to be stopped before completion, at other times no solution may exist (the
problem is over-constrained). Neither of these two situations is desirable – a manageable, non-
empty set of solutions is preferred. A standard approach for achieving this is to consider some
of the constraints as soft, that is, not necessarily satisfied. This approach, also called partial
constraint satisfaction (13), allows that only a subset of the constraints are active; this permits
additional acceptable value combinations in the solution.

A variant of the partial constraint satisfaction approach is applied here. All moves coming out
of the CMG have to satisfy all constraints, but if the set of legal moves is too small, the CG
adjusts the constraint set by loosening some of the constraints, and posts it to the CMG. This
means that the agent does the “soft” part outside of the CSP module itself, by means of the
looping between CG and CMG (cf. Figure 4.2).

To avoid time-consuming search, a strategy for the CG is to start with a strict constraint set
(generating no solutions), and iteratively loosen the constraint set until a proper set of legal
moves arises.

25

In the following we describe the applied constraints; these are divided into constraints that
affect the whole board (Section 5.3.1), and constraints treating sub-areas of the board (Section
5.3.2).

5.3.1 Global Constraints: Rules and Heuristics

Constraints implementing the rules:
The rules of the game represent a minimal reduction of the search space; all CSP searches are
constrained by the rules. Three different types of rules constitute the actual constraints:

1. Some nodes do not have edges in all four directions (cf. Figure 2.1).
2. When a piece is an attacker, it is not allowed to move out of the node.
3. A node can maximally contain three pieces of the same side.

The first type is easily implemented by removing subdomains of the variables before starting
the search. If, for instance, a piece is located in node A4, the directions west and east are
removed from the domain of the corresponding variable.

The second type is implemented in a similar way; the variables belonging to immovable pieces
have all values except remain removed from their domains.

The last type is an example of typical CSP constraints, as the constraint dynamically affects
the domains of the variables during the search. For instance, suppose that four Blue pieces is
placed around node B2, that is, the nodes A2, B3, C2 and B1 each contains one Blue piece. If
the variables of the first three of these pieces are given the values east, south and west,
respectively, the node B2 is full, and the value north is removed from the domain of the fourth
variable.

Heuristic constraints:
Human players of Operation Lucid typically develop some rules of thumb when playing the
game. The negative version of these rules, that is what to avoid, is utilised to make heuristic
constraints, the purpose of which is to reduce the search space as efficiently as possible
without removing all the “good” moves. The heuristic constraints we have identified are listed
below:

1. The pieces should not occupy more than a limited number of different nodes when the
move is completed.

2. No more than a limited number of axes should be used for forward (backward) movements
during one move. An axis is a chain of consecutive north–south edges, for example the
chain of edges from node B1 to node B5.

3. No more than a limited number of pieces may be moved into each of the five directions.
The number is set independently for each direction.

These three groups of constraints all affect the domains of the variables dynamically, like the
last group of rule-implementing constraints above. Note that despite the intention of not
removing all the good moves, this is of course not guaranteed. This is due to the very complex
mapping between the action performed and its effect on the result.

26

All three groups of constraints are parametric, that is, each constraint can be adjusted to
remove more or less of the search tree. This is a desirable property when adjusting the number
of moves coming out of the CMG by means of the loop in Figure 4.2. All parameters are
integer valued and mentioned by the phrase “limited number” in the list above.

5.3.2 Local Contraints: The Area Language Protocol

In addition to global constraints, based on the rules and our practical experience of the rules,
we also use local constraints, which are expressed through a protocol, namely the area
language (ALA) protocol. By means of this protocol a large variety of constraints, and
consequently playing styles, can be expressed. Without a general protocol like ALA, making a
new agent would mean starting from scratch and having to define and implement new concepts
and constraint types similar to the ones in Section 5.3.1.

ALA is a protocol for the communication between the CG and the CMG (cf. Figure 4.2). An
ALA constraint specifies the minimal number of pieces required in a sub-area of the board.
The syntax of ALA is as follows:

Let Mi denote a sub-area consisting of the set of nodes { } .,,, 21 knodenodenode � Then a
general ALA constraint set reads:

() () (){ }M n M n M nl l1 1 2 2, , , , , ,� ,

where each ni is an integer. The interpretation of this constraint set is that all moves generated
in accordance with this statement needs to have at least n1 pieces in the set of nodes M1 , at
least n2 pieces in M2 , and so on. An example constraint set is { }() { }(){ }3,5,1,2,3,2 ECBB ,
the interpretation of which is that there should be at least one piece in one of the nodes B2, B3,
and C2, and there should be three pieces in node E5. Note that all sub-area restrictions have to
be satisfied, due to the interpretation (logical AND) of the relationship between the constraints
in a constraint set.

It is easily seen that ALA can express all possible moves – any move can be specified
completely by letting each Mi consist of one node, and setting the corresponding ni to the
number of pieces in the node after the move has been made.

ALA has several advantages, such as expressivity and a well-defined format. Still, we have
found that combining ALA with heuristic constraints compares favourably to using only ALA
constraints. This is because the heuristic constraints express general knowledge about good
play that holds independently of the location on the board. ALA is not appropriate for
expressing this independence of location.

27

6 USING THE DESIGN (1): A NEURAL NET AGENT

This chapter and the next describe our use of the agent design in implementing actual game-
playing agents for Operation Lucid. First, we present a pair of agents, one Blue and one Red,
using a neural net (NN) trained from self-play by the temporal difference algorithm TD(λ).

6.1 Constraint Generation

The initial CG-modules of the agents are very simple. Only global constraints are used, and
they are static, except for the distribution constraint, that is, the constraint specifying the
maximum number of nodes with pieces. The maximum distribution is set as a function of the
number of remaining pieces:

.
3

pieces#1onDistributi +≤

Experiments have shown that the chosen set of constraints tends to give a reasonable number
of moves, typically between 10 and 100, and that they appear to allow at least a few sensible
ones. In Section 6.5 we will describe a more complex constraint generator for Blue, designed
to mend some weaknesses in the NN evaluator; this improved CG also uses ALA constraints.

If we for a moment view the constraints as game rules, we have defined a simpler version of
Operation Lucid. This modified game is in many ways similar to the dice game backgammon,
both being stochastic two-player zero-sum games with perfect information, and with similar
branching factors. Gerry Tesauro has showed that neural nets trained from self-play using TD-
learning can learn to play backgammon at championship level (34). We wish to test if the same
algorithm can be used successfully for our simplified version of Operation Lucid. Apart from
being an interesting application in its own right, this also serves as a test of how generally
applicable TD-learning in stochastic games is. The main difference between backgammon and
our simplified Operation Lucid game is that the former has a one-dimensional geometry, while
the latter is two-dimensional. Another important difference is that the dice rolls of
backgammon often force checkers to certain locations, while the pieces in the present game are
not forced in the same way.

6.2 Evaluating Moves by a Neural Network

The NN of our design is used for choosing a move from the list generated by the CMG,
placing it in the lower box of Figure 4.2. Rather than evaluating the moves as such, the net
equivalently evaluates the positions – game states – they produce. Because the game has
perfect information, each game state can be seen as the starting point of a new game, and
therefore has a value, according to game theory (21). The value is the expected number of Blue
pieces that reach the goal location, given perfect play by both sides. The NN works as a black
box function that takes the game state as input and gives an estimate of the value as output.
Note that the same NN can be used for playing both sides of the game. Blue chooses moves
that maximize the NN output, and Red chooses moves that minimize it.

28

The NN we use is a simple feed-forward net with one layer of hidden nodes and sigmoid
activation functions, and back-propagation of errors as update rule for the weights. This is a
“vanilla-flavored” design, which has been shown to work quite well for many different
problems. For a general introduction to NNs, one reference is (16).

As shown by Tesauro (34) and others, the input representation fed into the NN can affect the
performance significantly. We will not go into the details here, but our input representation
contains both “raw” board features (the number of pieces in different locations) and more high-
level features of the position. Examples of these are the number of Blue pieces placed on open
axes and the number of Blue pieces in defensive combat posture. In total there are 66 input
features. Our NN has only one output node, and the design chosen limits the output to the
range (0,1). The value of states has the range (0,15), so we multiply the NN output by 15. Our
NN has 20 hidden nodes.

6.3 TD(λλλλ)-learning

The basic idea behind temporal difference learning (33) is that the final outcome, and the
course of the game, is used to produce feedback signals to the NN for the states visited in the
game. A game that has been played to the conclusion gives a sequence of game states. When
calculating the feedback signal for one of these states s, the algorithm takes a weighted average
of the game outcome and the NN’s own evaluation of the states between s and the end state. A
parameter λ controls how much weight is placed on states that are close to or far from the state
s in time. Values of λ close to 1 place most of the weight on states close to the end (and the
actual outcome), and value close to 0 place most of the weight on states immediately
succeeding s. A NN trained by TD(λ) works towards predicting the expected end-state value of
a stochastic process. The fact that the stochastic process is controlled by the very same NN
complicates the picture, but the experience from backgammon suggests that this may not be a
big problem.

For our implementation of the training procedure three agents are used: a Blue agent, a Red
agent and a Referee agent. The Referee holds the NN, but the Blue and Red agents are granted
access to it, and use it in determining their moves. The Referee conducts the game by
maintaining the game state, and randomly draws turns and combat outcomes according to the
rules. The Referee informs Blue and Red about the current game state, and the side that wins a
turn responds with a move. After the game is finished, the Referee updates the NN according
to the TD(λ) algorithm. This procedure is then repeated for a large number of games. The
starting point of the algorithm is a NN with random weights.

6.4 Experimental Results

Our first experimental results were very negative, as the NN did not appear to learn anything
about the game, and the Blue side never got any pieces to the goal location. When inspecting
the game logs we quickly found out what was happening; Blue did not move forwards. It
moved its pieces to apparently random nodes, and then stopped. However, the TD-algorithm
actually did its job correctly, as the NN output was very close to zero. So the NN was indeed
able to predict the outcome of the games it played, except that it played the game poorly for
one side. As long as there had never been any game with positive feedback, the NN had no

29

means of distinguishing good states from bad. This does not happen in backgammon, because
the rules of that game forces the checkers forwards. Our problem was that the algorithm did
too little exploration of the state-space of the game. We were able to correct this by adding
some random noise to the games, sometimes drawing a move at random. Of course this was
more necessary in the early phases of training, and the frequency of the randomising procedure
was reduced with training time.

With the randomising procedure the results were pretty good. The NN learned that Blue should
seek openings in Red’s defence, and conversely that Red should cover axes with many Blue
pieces. It learned that one should always attack with the maximum number of pieces possible,
and that forward movement is more urgent for Blue closer to the end of the game.

We have tested the Blue version of our NN agent against the Red benchmark agent
DistExpRed (see Section 3.2.1).. The average performance started at 0, as the initial Blue agent
did not even know that it should move forwards. After approximately 10,000 games of training
the average performance reached approximately 5.5.

All in all it appeared to play a relatively sound game, with one exception. It never learned that
Blue should keep an unbroken supply line to his planned combat nodes. In retrospect this is
only natural, as the NN had no input feature telling it if it had these supply lines. In theory a
NN should be able to learn this from the raw input features, but connectivity in a graph is a
kind of problems that NNs handle poorly. Also a supply line would have to show up by chance
first, so that the NN could learn about its importance, and this is very unlikely.

6.5 An Improved Constraint Generator

To correct our Blue agent’s problem with supply lines we modified the constraint generator.
Simply put, we added a module that first chose a possible supply line, and then posted a
constraint in the ALA-syntax that had the desired effect of maintaining this line. Assuming that
we wish to have a supply line to the node A5, we can post the constraint set

{({A1},1),({A2},1),({A3},1),({A4},1)},

which means that at least one piece should be allocated to each of the nodes A1 to A4. This
improved constraint generator has to loop as indicated in Figure 4.2, because it will sometimes
first attempt to produce supply lines that cannot be constructed. The module also considers the
number of turns left in the game, as it is less desirable to keep a supply line when there is little
time left of the game.

When pitted against DistExpRed, the Blue agent’s performance increased to approximately 7,
which is a very significant improvement.

7 USING THE DESIGN (2): A FUZZY LOGIC AGENT

Fuzzy logic (FL) is a theory that is applicable to the problem of representing decision
situations where complexity and uncertainty are present (18, 37). Fuzzy rule representation and
extraction, learning and inference have been discussed in various settings, also applicable to

30

gaming situations (3, 6, 7, 23, 28, 32, 36). Thus, there exists a frame of reference for the
application of fuzzy logic to decision making in simulation game models.

In games, fuzzy logic may represent uncertainty of payoffs during play, as well as of the goals
of players and of game solution aspects (3, 7, 23, 28, 36). Here we describe an application of
the design in Chapter 4 for making a decision agent playing the Red side of Operation Lucid.

7.1 The Agent Model

The CSP/FL design follows the general agent model described in Chapter 4 and Figure 4.2
above, where three modules co-operate in sequence as an agent model. The FL part consists of
modules one and three, while module two is the CSP part.

The FL part of the agent model follows a basic design similar to an agent described for the
resource allocation game of Campaign (5). In both of these games the fuzzy logic part uses the
decision processes and variables of a military C2 headquarters as a model for the basic design.
The application of this same basic design model in the two different cases provides a design
method that can be used when designing such agents for automatic decision making in other
simulation models.

As explained in Chapter 5, the CSP part of the agent is used to generate a reduced set of
candidate actions (moves) from the very large set of possible moves, based on constraints
generated from the first FL agent module. The candidates in this set are then evaluated in the
second FL module to give a ranking of the moves.

7.1.1 Design Principles

As stated, in order to have a general design for a decision agent applicable to a gaming
situation, the basic decision processes and concepts of a military headquarters will be used as a
model.

In a military decision context a headquarters staff will use functional knowledge based upon
situational information to arrive at a chosen plan. A final decision is made by the staff
evaluating different possible courses of action (COAs), based upon these higher-level planning
directives. These planning and COA processes are adapted as a modelling basis in the design
of a Fuzzy Logic Decision Agent.

As decision inputs to the staff processes, in general force “strength” as well as force
“concentration” and “time” are used as basic variables of the decision process. The general
design for the Fuzzy Logic Decision Agent using this basic model is shown in Figure 7.1.

An intermediate game state is fed into to the PLAN fuzzy rule base with strength and time as
fuzzy input variables. The output from PLAN is the desired own strength values as constraint
parameters for the left and right halves of the game board (expressed as two ALA areas
overlapping in the middle column). For the Red FL Decision Agent a balance of own and
opponent strength in these halves is the main PLAN objective. From these PLAN constraints
the CSP module generates a set of moves, which are then evaluated in the COA fuzzy rule
base of the FL agent. This evaluation is based upon the agent’s own force concentration

31

characteristics of a move compared to the opponent threat in each of the two Red defensive
lines (the two northernmost rows), giving a resulting priority measure for the CSP-generated
moves. Normalising the priority measures to sum to 1 over the move set produces the final
output, an priority ranking of the move set for the current state. Finally, the Fuzzy Logic
Decision Agent selects the move with highest priority as the its move. In Operation Opaque,
randomised actions may be required; consequently, this normalised priority measure can be
interpreted as an estimated probability distribution function to be used for drawing a move at
random.

As seen from the figure, this design follows the general agent model described in Chapter 4,
and may be seen as a hybrid combination of two techniques, FL and CSP. This method for
constructing such agents may also be useful in other simulation game models where graphs
constrain the moves of the game. In such a context an ALA constraint set may be formulated
as described for this game with force balancing constraints generated according to objectives
of the agent.

In the following sections a detailed implementation for a Red FL Decision Agent is described
with variables, membership functions and rulebases defined.

 CSP-search :

 Generate moves

 FL rulebase 1
 “PLAN” :

 Generate
ALA-constraints

 FL rulebase 2
 “COA” :

 Evaluate
 CSP move list

 No
solution

 Intermediate state

 FL constraint list

 CSP move list

 Select best FL evaluated move

Figure 7.1 Design of the fuzzy logic agent

32

To simplify the implementation we restrict ourselves to fuzzy sets with triangular membership
functions only, even though more complex functional forms are well known (18, 37).
Furthermore, we partition the variable domains into triangular partitions (TP) (6, 32), where
the maxima (the “midpoints”) of the membership functions divide the domains into a sequence
of intervals, such that only two fuzzy sets are active at the same time. Thus, only two rules are
active for each variable in the fuzzy rule bases, giving an easy and fast inference process.

7.1.2 Implementation

A goal of the design is to use as few fuzzy model variables and sets as possible to reduce the
size of the rule bases while still achieving acceptable performance. Therefore, only the two
variables strength and time are used as input to the PLAN rule base. In order to be able to use
the same rule bases regardless of game board size, the number of rounds, the number of pieces
and the strength and time variables are reduced to the following two input fuzzy ratio variables
s and t :

[].1,0;)/(
/;/;/

0 ∈−=
===

tnnt
sssrrsbbs rbrlrrlb

τ

Here rb ss , are opponent and own force ratios between the left and right ALA half areas of the
game board, s is the «strength» expressed as a left/right-side force balance ratio, 0n is the
initial number of rounds, and n is the number of rounds left. Since the game is stochastic
with player turns drawn randomly at each round, the time variable τ is an urgency variable as a
function of the number of turns won for the opponent: Tw /=τ where w is the number of
opponent turns won and T (= 5) is the minimum time taken to traverse the board. This will
regulate the fuzzy time ratio variable t according to possible early threats due to opponent
luck.

The strength variable expresses the relative opponent left and right force-ratios, which gives a
balancing signal to the Red player. The input variable time is also a ratio variable, and
together they are the input to the PLAN rule base, which is valid for any number of pieces and
game duration. The PLAN rule base will give a balancing correction as output, to direct the
movement of the Red pieces in a generally favourable direction. In this way the role of the
PLAN rule base is to act as a high-level decision-making part of the agent, while the COA
base evaluates the move set from PLAN in more detail.

The initial FL membership functions for the input variables are shown in Figure 7.2. Three
fuzzy sets, weak, even and strong, are defined for the strength variable, while only two sets
early and late are initially considered for the time variable.

33

Membership function "strength"

0

0,5

1

1,5

0 0,5 1 1,5 2 2,5

LATE

Membership function "time"

0

0,5

1

1,5

0 0,5 1 1,5

LATE EARLY

SmallPos

Membership function "rate"

0
0,2
0,4
0,6
0,8

1
1,2

0 0,5 1 1,5

LargePosSmallPosZ

STRONGEVEN

Membership function "strength"

0

0,5

1

1,5

0 0,5 1 1,5 2 2,5

STRONGEVENWEAK

Figure 7.2 Membership functions for the fuzzy input variables strength and time, and for the
output variable moving rate (shown for the positive direction left only, symmetric
for the negative direction)

Both these input variables for the Red player contribute to the moving rate and direction output
e from PLAN: early on the Red player may react slower than later, when it is imperative to
reach a balancing position fast in order to prevent Blue from moving to the Goal node. Equal
balance for Red and Blue gives no signal and Red remains as before. This leads to three
magnitudes for the moving rate variable: zero, small and large. Directional information is
given as the suffix pos (left) or neg (right) as shown in Figure 7.2.

The PLAN rule base is shown in Table 7.1, where the FL input variables s and t and the
moving rate output variable e are shown. This rule base expresses an error correction logic for
balancing Red and Blue forces in each ALA half of the board.

Strength \ Time Early Late
Weak SmallNeg LargeNeg
Even Zero Zero

Strong SmallPos LargePos

Table7.1 The PLAN FL rulebase with strength and time as input, and with moving rate as
output (left direction is positive).

34

Defuzzying the output variable e gives new balanced Red force objectives for the left and right
side ALA areas :

[]
[],)(,0)1(;)()1(

)(,0)1(;)()1(

)(
1

1)(
1

nrnrrcorrnrnr
nrnrrcorrnrnr

nr
s

nr
s

sercorr

rrr

lll

lr

∈−−=−
∈−+=−

�
�
�

�

+
−

+
⋅=

where)(),(nrnr rl are the Red number of pieces in the left and right ALA halves of the game
board,)(nr is Red total number of pieces and n is number of rounds left. The correction term
in these equations seeks to match the Red and the opponent left/right balance ratios as much as
possible.

Based upon the new corrected Red left/right balance ratio, the following ALA constraints are
given to the CSP module: (LeftArea,)1(−nrl), (RightArea,)1(−nrr). It may happen that the
CSP-module gives no moves satisfying these constraints. The FL module then loops a number
of times, subtracting one piece from each of these constraints until a valid move set results or a
maximum number of iterations is reached (in which case Red does not move). In addition to
these ALA constraints some general, parametric constraints are also given to reduce the move
set, such as:

• maximum number of moves ≤ MaxMoves
• maximum number of pieces moving left/right/south ≤ MaxPieces
• maximum number of occupied nodes ≤ MaxNodes

– where the right-hand sides are integer parameters (a separate MaxPieces parameter is used
for each of the three directions). These constraints together define the PLAN rule base
resulting in ALA constraints that the CSP module uses to generate a move set, from which a
best move is selected in the following COA part of the agent.

The COA part considers the threat for every move in each of the upper two rows of the game
board, since these are considered the main defensive lines for Red. Each row is a separate new
ALA area (Row4 and Row5). COA is divided in two separate rule bases where the first,
COA1, evaluates the local threat in a single node of each area, and the second rule base,
COA2, determines the final ranking based upon the summed threat in each of the two rows.
These rule bases allow the Red FL agent to consider the simultaneous deployment priority in
two rows and thus gain a possible advantage by cutting Blue’s supply line.

The COA1 rule base takes Red and Blue forces)(),(nbnr in a single node as input and gives a
local threat (or opponent advantage) estimate)(np for this node as output. Three fuzzy sets
none, medium and high are defined for both of the input force variables, while the threat output
in the interval [0,1] is divided into 9 sets .9,,1, �=kPk The membership functions for these
variables are shown in Figure 7.3, where only one of the two force input functions is shown.

35

Membership function "force"

0

0,5

1

1,5

0 1 2 3 4

Membership function "threat"

0
0,2
0,4
0,6
0,8

1
1,2

0 0,2 0,4 0,6 0,8 1 1,2

HIGHMEDIUMNONE
P1 P2 P3 P4 P5 P6 P7 P8 P9

Figure 7.3 Membership functions for the two fuzzy input variables force (the same for both
Red and the opponent), and for the output variable threat from the COA1 rule
base.

The COA1 rule base is shown in Table 7.2, where the FL input force variables and the threat
output variable kP are shown. This rule base expresses threat estimate logic for a node relating
the input of Red and opponent forces to the threat output variable kP for the node.
Defuzzifying the output kP from COA1 and summing over the nodes in each of the two ALA
rows Row4 and Row5 gives a total threat estimate for each of these rows after normalising by
the number of nodes in each row.

Force 1 \ Force 2 None Medium High
None 6P 7P 9P

Medium 2P 4P 8P
High 1P 3P 5P

Table 7.2 The COA1 FL rulebase with forces as input, and with estimated threat in a node
as output.

The COA2 rule base is similar to the one shown for COA1 in Table 7.2, except that the two FL
input variables are the Row4 and Row5 summed threats, and the output variable is the
resulting ranking or priority Pr in the interval (0,1). This rule base gives the final priority of a

move by considering the two upper defensive rows of the Red agent simultaneously. This
allows for weighting between both defensive and more offensive types of Red agents to test
their resulting performance.

Defuzzifying the output from COA2 for each move in the generated move set and normalising
the priorities to sum to one gives the final ranking as basis for selecting the highest value move
for the Red agent to play next.

This completes the total design and implementation of the Red FL/CSP agent which consists
of seven membership functions used in three rule bases with a total of 24 rules. The
membership values shown above are the initial values, and the Red agent parameters may be
tuned by optimising its performance in a separate training session.

36

7.2 Training the Agent

To train a Red agent R , an optimisation procedure against a selected opponent agent B from a
fixed set S of opponents is considered. The selection will be based upon the expected outcome

),(RBE− – see Section 3.1 – against the opponent that is considered best (by judgement or
tournament results from a number of games):

{ }),(inf);(RBESRinfS
SB∈

−=

This will give an approximation to a global equity result for the Red agent, but several
problems exist that make such a procedure challenging. First, no global best opponent is
known, and thus only an approximate estimate of global equity is measured. Secondly, the
game is stochastic, which gives a noisy performance measure that may confuse an optimising
training algorithm. Variance reduction methods from a number of games must be used for each
expected outcome estimate as described in Chapter 3.3. Thus, compared to a previously
described agent training for the resource allocation game Campaign (5), this training process
will be much more demanding.

7.2.1 Training Method

As an estimated best opponent, only one agent oB that initially randomly chooses one of the
board columns and then moves with maximal thrust to the Goal along this column – that is, the
OneAxisBlue agent of Section 3.2.1 – is selected. This is considered a representative
challenge for a Red agent, since lateral movement of Red is necessary and all columns of the
game board may be chosen. Force concentration ability is also tested, since the opponent uses
maximum thrust (with three pieces) in front whenever possible, which must be matched by
Red to achieve a good performance. One weakness of the agent oB is its lack of a supply line
in later rounds of a game.

As described for Campaign (5), the training process is using a Nelder-Mead optimisation
algorithm similar to the Matlab function fmin or the NAG routine E04CCF (22) to tune the
Red agent fuzzy parameter values. These membership function parameters are modified based
upon minimisation of the opposing number of pieces in the Goal node at the end of a game.
As described, this is a noisy output measure, and an expected adjusted value based on variance
reduction from a series of games with the same input parameter set is used as optimisation
performance measure to try to filter out the noise. However, a complete filtering is not
possible, and the optimisation process may therefore be confused by the noise in the output.
The number of games chosen for each adjusted mean value is thus a very important parameter
of the training process.

Of course, if the training process is so fast that time spent in training is negligible, then there is
no problem. But the considerations above is precisely translating into total computing time for
this training process. Some numbers may illustrate this. One game takes roughly 10 seconds on
a Pentium II 450 MHz machine with ILOG CSP software (17). To be able to discriminate
between outputs differing by 0.1 with 95% confidence, about 2500 games must be run per
optimisation iteration. This gives roughly 7 hours per iteration of the optimisation process, or
3–4 trial points per day. Since a training process may use more than 100 iterations to arrive at a

37

near optimum, one sees that noise is a very complicating factor of this game, and in general of
training problems this noisy. Furthermore, since we do not know the general properties of the
outcome function, global optimisation with random starts should be used when tuning the Red
agent. Thus, still another factor must be considered when training for this game.

The following procedure considers these factors when using optimisation to train the Red
CSP/FL agent:

(a) Choose a number of random starting values for FL parameters in a first-pass global search
phase with 40 games per iteration. Select the best of these for the next phase (b).

(b) Start with the best of (a) in a second-pass optimisation, starting with 400 games per
iteration for 100 initial iterations to determine parameter gradients. Continue with 4000
games per iteration for a number of optimising iterations with improved outcome accuracy
until no improvement or until a maximum number of iterations is reached.

(c) Compare the result from (b) with a third-pass optimisation as in (b), but now starting with
the best human initially determined FL parameters based upon judgement and experience
from game plays.

(d) Select the best of (b) and (c) as the current Red CSP/FL tuned agent.

The results of this procedure are described for the Red CSP/FL agent based upon seven
random starts for the global first-pass search phase. This phase would benefit greatly by
parallel processing, but this has not been used here. The step (b) requires more sequential
processing, even though parallel optimisation software certainly would be of benefit to the
overall optimisation process.

7.2.2 Experimental Results

Training the Red CSP/FL agent using the procedure above gave the optimisation results shown
in Figure 7.4 for step (a). It is seen that even though the results are noisy, one of the first-
phase random start runs is a clear best, and this is selected for use in steps (b) and (c) for
further optimisation.

Random starts for global optimization

0
2
4
6
8

10
12
14

0 50 100 150 200
Iterat io ns

Figure 7.4 Global optimisation with seven random starts for the FL agent using 40 games
per iteration (a total of 47600 games are used)

38

It is also clear that the noisy output makes it difficult for the optimising algorithm to improve
when only 40 games per iteration are used.

Continued optimisation in step (b) with the best global run from (a) is shown in Figure 7.5. As
seen from the figure no significant improvement is found after more than 150 iterations. It
may be that only a local minimum has been found, indicating that the random global search
start set is too restricted. In addition, the gradient information after ca 100 iterations may also
be noisy due to too few games pr iteration (400), giving errors in the search directions for the
rest of the optimising iterations.

The results of step (c) starting with parameters based upon human judgement and experience
are also shown in Figure 7.5. It is seen that after an initial gradient search the optimisation
gives only a slight improvement of the initial FL player. The results demonstrate fully the
difficulties of noisy optimisation. Still, the performance of the trained Red FL agent from steps
(a), (b) and (c) is such that only ca 40 % of the opponent force (that is, six pieces) on average
reaches its goal node.

Continue best global optimization

0

2

4

6

8

0 50 100 150 200
Iterat ions

a/b

c

Figure 7.5 Continued optimisation of the best global FL agent using 400 games (100
iterations) and then 4000 games pr iteration (for a total of 140000 games,
graph a/b). Also shown are optimisation iterations with the best human-found
initial FL parameters using 1000 games pr iteration (for a total of 200000
games, graph c).

7.3 Discussion

A CSP/FL agent following the general design model of Chapter 4, where three modules co-
operate in sequence as an agent model, has been described. The FL part of the agent model
follows a basic design similar to an agent described for another resource allocation game (5).
In both of these games, the fuzzy logic part is using the decision processes and variables of a
military C2 headquarters as a model for the basic design. Thus, applying this same basic
design model in these two different cases provides a design method that may be considered
useful (as a possibility of using the same ideas) when designing such agents for automatic
decision making in other, more general simulation game models.

It is simple to construct a set of initial FL rules and membership functions based on this
design, and human judgement and experience is also integrated rather easily to form a best
human initial agent model as starting point for further training and tuning. However, such

39

training is not easy mainly due to the complexity and stochastic (noisy) outcome of the game.
We chose initially to apply a global search from a set of random starting points, with further
optimisation based upon a best choice. The optimisation process is shown to be susceptible to
the outcome noise, and this translates to high computing time requirements. Given sufficient
computing power an optimisation may be possible, but finding a global optimum agent is still
a very demanding task.

Even though the training process has proved difficult, the trained Red CSP/FL agent is still
having a satisfactory performance, denying on the average 60 % of the opponent forces from
reaching their goal.

The resulting CSP/FL agent design is compact and generally applicable to any board size,
force level and game duration since ratio variables are used in the design. This is an obvious
advantage when considering possible variations of the particular game version described here.
Furthermore, the rule bases are small with altogether only 24 rules distributed in three rule
bases, and with a total of seven membership functions.

The results are shown for a stochastic game with perfect information. If we insert a possible
CSP- or a separate FL- based intelligence module, most of the basic FL agent design may be
utilized also for a game with imperfect information, where the move rank priority output
function of the agent may be interpreted as a probability function for random draws between
moves. This may be a topic for further research, together with possible improvements of the
training optimisation process. Finally, as further research an opponent agent may also be
constructed, using a similar design as a “mirror” image of the Red agent with an evading
strategy, giving opposite error correction signals in the FL PLAN rule base. Thus, similar
modules as described may be used for both a Red and a Blue agent with differences only in the
final fuzzy tuned parameters.

8 DEALING WITH IMPERFECT INFORMATION

Although there is nothing in the general design in Chapter 4.2 that presupposes perfect
information, both of our actual applications of the design are limited to Operation Lucid. The
neural network agent evaluates game states based on the location of both its own and its
opponent’s pieces, while the fuzzy logic agent uses the opponent’s known force distribution to
decide on a desirable positioning of its own pieces. What these applications have in common is
then that a decision is taken based on the current state only; this is a valid approach as the
game possesses the Markov property.

The imperfect-information property of Operation Opaque, on the other hand, implies that the
whole history up to the present state (as seen by one of the agents) has to be taken into
account. This chapter describes a way of using the ALA language (Section 5.3.2) and
constraint satisfaction programming in the design of an intelligence module3 for agents playing

3 The term “intelligence” is here used in its military sense, that is, as an approximate synonym to “information
processing”, not to “intellectual capacity”.

40

Operation Opaque. This module has not at the time of writing progressed past the prototype
stage, and further implementation, testing and use is a topic for future research.

8.1 An Intelligence Module for Operation Opaque

In a given observed state of Operation Opaque, the whereabouts of opponent pieces are in
general not known. This does not necessarily mean, however, that these pieces could be
anywhere apart from the observed nodes. Observations of opponent pieces in earlier stages of
the game may be a source of information, as the distance such a piece may have moved since it
was observed is constrained by the number of turns the opponent has won. In addition, the
initial set-up (Figure 2.1) is known by both sides. This indicates that the question of where the
enemy pieces are located can be formulated as a constraint satisfaction problem.

When an agent is to use its information from earlier stages in making a decision, the most
relevant basis for this decision is where the opponent’s pieces may be at the moment. This
information can also be expressed another way, namely as which nodes and sets of nodes may
hold a certain number of enemy pieces. The ALA syntax is well suited for expressing queries
using the latter formulation, the semantics is then that an ALA constraint set

() () (){ }ll nMnMnM ,,,,,, 2211 �

is a query to the intelligence module about whether the opponent may have at least 1n pieces in
the node set },,,{ 211 knodenodenodeM �= and at least 2n pieces in node set ,2M and so on.

Since observed enemy pieces are indistinguishable, the problem of identity needs to be
implicitly addressed by the intelligence module. Consequently, the CSP formulation of the
problem includes two kinds of variables. Firstly, there is one set of variables for each opponent
piece, where the possible values represent the location of the piece on the board. Secondly,
there is one set for each node, where the value represents the number of opponent pieces in that
node. (The values of the latter type of variables are calculated from those of the former type.)
The set of variables for a piece or a node contains one variable for each turn the opponent has
won during the game.

The constraints limiting the values of the variables are also of two types. The first set of
constraints is generated from the observations the agent has made about the enemy during the
game, including negative observations (nodes without opponent pieces). The known starting
position is treated as an observation of this type. The other set of constraints represents the
rules of the game, and constrain the possible values for the position of a piece at time t, based
on its position at time 1−t and on any combat that has taken place.

When an ALA query about enemy pieces is passed to the intelligence module, a CSP search
tries to find an assignment of the pieces at the current time that does not violate the constraints.
If such an assignment is found, the module stops searching and returns a positive reply. If no
valid assignment is found, a negative answer is returned.

41

The full CSP search may be computationally prohibitive. A way of limiting the complexity of
the problem at the expense of certainty in the answer is to let the module guess at the probable
identity of observed pieces.

The problem remains how to use this type of information in actual agents – this is a topic for
future research. If we were able not just to ask the intelligence module whether a given enemy
distribution is possible, but also to ask for the most likely distribution (under some set of
assumptions), the agents developed for Operation Lucid could be used with the modification
that the most likely distribution is treated as the observed one. This is an even more complex
problem than the one considered above, and has not been treated.

Another possible application of the intelligence module in its current design is as a planning
tool for Operation agents. In this context, the current state of the agent’s own pieces can be
entered as an observation, and questions about future possibilities posed to the module. An
example query of this type could be “is it possible for me to reach the goal with five pieces
before the game ends, given that I win at least half of the turns?”

9 FUTURE RESEARCH

Although we have made considerable progress in our research on decision-making software
agents for Operation, there are still plenty of unresolved problems and unexplored territory left
to investigate4. Here we mention some promising directions for further studies.

A major difficulty for learning algorithms in Operation is the presence of noisy game
outcomes due to random draws. The most successful learning procedure used was
reinforcement learning by the TD(λ) algorithm, which handles this kind of noise reasonably
well. A possible further improvement of this algorithm may be to adopt the principles of
variance reduction used in Section 3.3 to give better feedback signals, adjusted for the outcome
of the random draws, to the learning algorithm.

The agents considered so far have all been on the “top level”, that is, they have been able to
directly move their pieces as they like (subject, of course, to the rules of the games). When
modelling combat, it seems reasonable that the pieces themselves should also have their own
behaviour, since they represent military units. In this context, each side of the game would
consist of a collection of agents, each observing, moving in and acting on its environment. A
problem that arises when modelling the situation in this way is how to assign credit or blame
for good or bad results to the individual agents. A possible starting point for methods and
references on this subject is (29).

In addition to the fact that decision making in combat models is distributed, it is also usually
hierarchical – there is a hierarchy of decision makers operating on different levels. So far we
have addressed only the top level in our work, while the individual units mentioned in the
previous paragraph represent the bottom level. The hierarchy may consist a number of such
levels, each of which communicates with the levels above and below it. Here, different

4 The research on Operation will be continued in FFI project 806, “Machine Learning in Simulation”.

42

learning methods may be suitable for learning at the different levels. A useful starting point for
research may be (31).

The learning methods addressed in this report depends on the game outcomes only for their
feedback. As we have seen, this feedback is noisy, a fact that complicates learning. Another
approach to learning good game-play may be to use machine learning techniques for imitating
expert behaviour. The work reported in (9) on the game of go indicates that such imitation
learning may be useful, at least for certain aspects of the game. A disadvantage of this “data
mining” approach is that it presupposes a large number of games played by experts – for
Operation, such experts must clearly be human.

10 CONCLUSION

We have presented the work that was done on the games Operation Lucid and Operation
Opaque during the FFI project “Synthetic Decision Making”. The main conclusions from our
studies can be summarised as follows.

The games of Operation have proved successful as working environment for studying decision
making in combat models (Chapters 1–2).
In a “live” combat model, the complexity that a decision-maker needs to handle is typically
very large. Some of this complexity is due to details specific to the model itself, and some is
common to combat models in general. When studying automatic decision making, the latter
type is of special interest, since we seek methods that are broadly applicable. The games of
Operation succeed in providing an environment with very high complexity, while still
possessing a fairly simple set of well-defined rules. Also, the design of the games has proved
robust, in that no changes have been necessary during our work.

Many techniques that have traditionally been used in AI research on games are not useful in
Operation (Chapter 1; Section 4.1).
In previous research on artificial intelligence for game playing, focus has mainly been placed
on games of perfect information with low complexity compared to Operation. In these other
games, brute-force searches looking several moves into the future have been possible, at least
when effective pruning techniques such as alpha-beta search have been used. The information
imperfection of Operation Opaque renders such search techniques meaningless. For the
perfect-information Operation Lucid they are at least well-defined, but the complexity of the
game renders them useless in practice.

When an agent’s game-play is to be evaluated, the chosen evaluation criterion is of great
importance (Sections 3.1–2).
It seems intuitive that there should exist an evaluation criterion ranking strategies in a
consistent way, that is, such that higher-ranked strategies on average will beat lower-ranked
ones. This intuition does not hold, as there may well be strategies that beat each other in circle.
For mathematically sound criteria we need to turn to game theory. Since these criteria are
generally not possible to employ in practice, we must resort to evaluating agents by playing

43

them against other agents. Still, the properties of the “correct” evaluation criteria should be
kept in mind when using this mode of evaluation.

Our variance reduction techniques have been valuable in reducing the number of games
needed for satisfactorily accurate estimates of expected outcomes (Section 3.3).
The random draws in Operation have great influence on the game results. In order to gain
statistically significant estimates of the expected outcome between two strategies, it is
necessary to play a number of games. Since each game takes some time to complete, methods
that reduce the necessary number of games for the required accuracy are valuable. By applying
domain knowledge and the method of variance reduction by control variates, we were able to
reduce the required number of games with factors of more than ten for our non-trivial
reference agents.

Humans and computers generally use different approaches to selecting moves. Both of these
approaches have serious weaknesses when applied to games like Operation (Section 4.1).
When playing games, humans mainly plan forward in time and construct moves, while
computers generate all possible moves and evaluate them to find the best one. The constructive
approach, when applied to computers, has the disadvantage that the complexity of the domain
makes it difficult to define construction rules with sufficient power of expression to achieve
high-performance game-play. The evaluation approach, on the other hand, presupposes that all
legal moves can be enumerated in a reasonably short time; this assumption does not hold for
Operation.

Our CSP-based agent design has been successful in combining the strengths of the two basic
playing approaches (Chapters 4).
A strength of the constructive approach is that it reduces complexity; a strength of the
evaluation approach is that it divides its task into two clearly-defined subtasks: generating the
legal moves and choosing between them. Our CSP-based agent design combines modularity
and reduction of complexity by using constraints to implicitly describe a limited set of
candidate moves to be evaluated.

Our applications using neural nets and fuzzy logic illustrate how the design is general
enough to be useful in agents working in quite different ways. (Chapters 6–7).
Both the neural net agents of Chapter 6 and the fuzzy logic agent of Chapter 7 use our CSP-
based agent design. In the basic neural net agents, a minimum of domain knowledge was built
in. The fuzzy logic agent, on the other hand, was designed to resemble a military staff
headquarters – here, knowledge of the domain was clearly important.

Knowledge-intensive methods can be useful for quickly developing agents of reasonable
quality (Sections 3.2.1 and 7.2).
The very simple Blue agent OneAxisBlue, built entirely on the principle of force
concentration, achieved results comparable to the basic Blue neural net. The fuzzy logic agent
where the fuzzy parameters were set by a human also achieved decent results.

44

Noisy results hinder optimisation of parameters directly from the game outcomes.
Reinforcement learning algorithms like TD(λ) may overcome this in the perfect-information
case (Sections 7.2 and 6.3–4).
The training of the fuzzy logic agent by optimising its parameters from game outcomes using
standard gradient-based methods were largely unsuccessful, due to the high amount of noise in
the results. The basic Blue neural net, on the other hand, used the reinforcement learning
algorithm TD(λ) for training. Although its game-play did have some weaknesses, the progress
made during training was encouraging. Neural nets work well with reinforcement learning; this
conclusion is also supported by other work done in the project (10).

Adding some domain knowledge to an agent otherwise lacking in prior knowledge may
significantly improve performance (Sections 6.4–5).
The neural net learning algorithm of Chapter 6 was not able to identify valid supply lines and
learn that this was an advantageous feature, because very few of the states it would encounter –
by chance or on purpose – would have one. The Blue neural net significantly improved when
this knowledge was added, and it was told to keep a supply line for the early and middle parts
of the game.

The ALA language, originally made for defining local constraints, appears to be a versatile
tool (Section 5.3.2 and Chapter 8).
Although the area language (ALA) protocol was designed to express constraints describing the
minimum number of pieces to be placed in sets of nodes, preliminary work on an intelligence
module for Operation Opaque indicates that it may be applied in other contexts as well.

We have only scratched the surface yet (Chapter 9).
Although considerable work has been done, there is still much left to explore. Possible
directions for future research include more robust reinforcement learning algorithms, multi-
agent architectures, hierarchical learning and imitation of expert behaviour.

45

References

(1) Bakken B T, Dahl F A (2000): An empirical study of decision making and learning in a

complex two-person zero-sum game with imperfect information, FFI/NOTAT-
2000/03919, Norwegian Defence Research Establishment.

(2) Bergli J (1998): ExperTalk FFI-versjon 1.0 – Teknisk dokumentasjon og

brukerveiledning (ExperTalk FFI-version 1.0 – Technical documentation and user
manual), FFI/NOTAT-98/04152, Norwegian Defence Research Establishment (in
Norwegian).

(3) Borges P S S, Pacheco R C S, Barcia R M, Khator S K (1997): A fuzzy approach to the

prisoner’s dilemma, Biosystems 41, 127–137.

(4) Brailsford S C, Potts C N, Smith B M (1999), Constraint satisfaction problems:

Algorithms and applications, Eur J Op Res 119, 557–581.

(5) Braathen S (1999): A Fuzzy Logic Decision Agent for automatic decision making in a

zero-sum game, FFI/NOTAT-99/00877, Norwegian Defence Research Establishment.

(6) Butnario D, Klement E P (1993): Triangular Norm-Based Measures and Games with

Fuzzy Coalitions, Kluwer, Dordrecht, The Netherlands.

(7) Campos L, Gonzales A, Vila M-A (1992): On the use of the ranking function approach to

solve fuzzy matrix games in a direct way, Fuzzy Sets and Systems 49, 193–203.

(8) Christodoulou N, Wallace M, Kuchenhoff V (1994), Constraint logic programming and

its application to fleet scheduling, Information and Decision Technologies 19, 135–144.

(9) Dahl F A (1999): Honte, a go-playing program using neural nets. In: Proceedings of the

ICML-99 Workshop on Machine Learning in Game Playing (Eds J Fürnkranz, M Kubat),
Jožef Stefan Institute, Ljubljana, Slovenia.

(10) Dahl F A (2000): Artificial intelligence and human behaviour in simulations – Final

report from FFI-project 722 “Synthetic Decision Making”, FFI/RAPPORT-2000/04395,
Norwegian Defence Research Establishment.

(11) Dahl F A, Halck O M (1998), Three games designed for the study of human and

automated decision making. Definitions and properties of the games Campaign,
Operation Lucid and Operation Opaque. FFI/RAPPORT-98/02799, Norwegian Defence
Research Establishment.

(12) Freuder E C, Mackworth A (1994), Constraint-Based Reasoning, MIT Press, Cambridge,

Mass.

(13) Freuder E C, Wallace R J (1992), Partial constraint satisfaction, Artificial Intelligence 58,

21–70.

(14) Halck O M, Dahl F A (1999): On classification of games and evaluation of players – with

some sweeping generalizations about the literature – A paper presented at the ICML-99
Workshop on Machine Learning in Game Playing, FFI/NOTAT-99/04875, Norwegian
Defence Research Establishment.

46

(15) Haralick R, Elliott G (1980), Increasing tree search efficiency for constraint satisfaction

problems, Artificial Intelligence 14, 263–313.

(16) Hassoun M H (1995), Fundamentals of Artificial Neural Networks, MIT Press,

Cambridge, Mass.

(17) ILOG (1999), Ilog Solver 4.4, User´s manual.

(18) Kosko B (1997): Fuzzy Engineering, Prentice-Hall, Upper Saddle River, NJ.

(19) Kumar V (1992), Algorithms for Constraint Satisfaction Problems: A Survey, Department

of Computer Sciences, University of Minnesota.

(20) Lajos G (1995), Complete university modular timetabling using constraint logic

programming. In: First International Conference on Practice and Theory of Automated
Timetabling (Eds E Burke, P Ross), Lecture Notes in Computer Science vol. 1153,
Springer, Berlin, 146–161.

(21) Luce R D, Raiffa H (1957), Games and Decisions, Wiley, New York.

(22) Mathworks (1995): MATLAB User’s Guide, Mathworks, Natick, Mass.

(23) Mohanty, B K (1994): A procedure for measuring uncertainties due to lack of

information in a fuzzy game theory problem, Int J Systems Sci 25, 12, 2309–2317.

(24) Nelson B L (1990): Control variate remedies, Op Res 38, 6, 974–992.

(25) Nuijten W P M, Aarts E H L (1996), A computational study of constraint satisfaction for

multiple capacitated job shop scheduling, Eur J Op Res 90, 269–284.

(26) Russell S J, Norvig P (1995), Artificial Intelligence. A Modern Approach, Prentice Hall,

Upper Saddle River, NJ.

(27) Sabin D, Freuder E C (1994), Contradicting conventional wisdom in constraint

satisfaction. In: Proceedings of European Conference on Artificial Intelligence (ECAI-
94) (Ed A G Cohn), Wiley, Chichester, UK, 125–129.

(28) Sakawa M, Nishizaki I (1994): Max-min solutions for fuzzy multiobjective matrix games,

Fuzzy Sets and Systems 67, 53–69.

(29) Schneider J, Wong W-K, Moore A, Riedmiller M (1999): Distributed value functions. In:

Machine Learning. Proceedings of the 16th International Conference (ICML ’99) (Eds I
Bratko, S Džeroski), Morgan Kaufmann, San Francisco, California, 371–378.

(30) Sendstad O J, Halck O M, Dahl F A (2000): A constraint-based agent design for playing

a highly complex game – A paper presented at the PACLP 2000 conference,
FFI/NOTAT-2000/01091, Norwegian Defence Research Establishment.

(31) Stone P, Veloso M (2000): Layered learning. In: Machine Learning: ECML 2000.

Proceedings of the 11th European Conference on Machine Learning. Lecture Notes in
Computer Science vol. 1810 (Eds R López de Mántaras, E Plaza), Springer-Verlag,
Berlin–Heidelberg–New York, 369–381.

47

(32) Sudkamp T, Hammell R J II (1994): Interpolation, completion, and learning fuzzy rules,

IEEE Trans Syst, Man, Cybern 24, 2, 332–342.

(33) Sutton R S (1988), Learning to predict by the method of temporal differences, Machine

Learning 3, 9–44.

(34) Tesauro G J (1992), Practical issues in temporal difference learning, Machine Learning 8,

257–277.

(35) Tsang E (1993), Foundations of Constraint Satisfaction, Academic Press, London, UK.

(36) Zhang Y-Q, Kandel A (1997): An efficient hybrid direct-vague fuzzy moves system

using fuzzy-rules-based precise rules, Expert Systems With Applications 13, 3, 179–189.

(37) Zimmermann H J (1996): Fuzzy Set Theory – and Its Applications, third edition, Kluwer,

Dordrecht, The Netherlands.

48

49

DISTRIBUTION LIST

FFISYS Dato: 15 november 2000
RAPPORTTYPE (KRYSS AV) RAPPORT NR. REFERANSE RAPPORTENS DATO

X RAPP NOTAT RR 2000/04403 FFISYS/722/161.3 15 november 2000
RAPPORTENS BESKYTTELSESGRAD ANTALL EKS

UTSTEDT
ANTALL SIDER

Unclassified 37 49

RAPPORTENS TITTEL FORFATTER(E)

DECISION MAKING IN SIMPLIFIED LAND
COMBAT MODELS - On design and implementation
of software modules playing the games of Operation
Lucid and Operation Opaque

HALCK Ole Martin, SENDSTAD Ole Jakob,
BRAATHEN Sverre, DAHL Fredrik A

FORDELING GODKJENT AV FORSKNINGSSJEF: FORDELING GODKJENT AV AVDELINGSSJEF:

EKSTERN FORDELING INTERN FORDELING
ANTALL EKS NR TIL ANTALL EKS NR TIL

1 Prof H R Jervell 14 FFI-Bibl
Inst for lingvistiske fag 1 Adm direktør/stabssjef
Universitetet i Oslo 1 FFIE
Pb 1102 Blindern 4 FFISYS
0317 Oslo 1 FFIBM

1 R H Solstrand, FFISYS
1 Prof O Hallingstad 1 B E Bakken, FFISYS

UniK 1 J E Torp, FFISYS
Pb 70 1 F A Dahl, FFISYS
2027 Kjeller 1 B T Bakken, FFISYS

1 S Braathen, FFISYS
1 Prof II R A Fjellheim 1 O M Halck, FFISYS

UniK 1 O J Sendstad, FFISYS
Pb 70 1 K A Veum, FFIE
2027 Kjeller 1 H O Sundfør, FFISYS

FFI-veven
1 Prof T Lensberg

Inst for samfunnsøkonomi
Norges handelshøgskole
Hellev 30
5035 Bergen

1 F aman J Frihagen
Krigsskolen
Pb 42 Linderud
0517 Oslo

1 KK J K Nyhus
Forsvarets stabsskole
Oslo mil/Akershus
0015 Oslo

www.ffi.no

FFI-K1 Retningslinjer for fordeling og forsendelse er gitt i Oraklet, Bind I, Bestemmelser om publikasjoner
for Forsvarets forskningsinstitutt, pkt 2 og 5. Benytt ny side om nødvendig.

