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COMPARISON BETWEEN ANALYTICAL SHOCK MECHANIC SOLUTIONS AND 
NUMERICAL SOLUTIONS FROM THE AUTODYN HYDRO CODE 
 

1 INTRODUCTION  
Numerical codes, i.e. Autodyn[1] are widely used for simulations purposes during impact and 
penetration of projectiles into targets. To check the validity of the simulations during shock 
compression we first study the axiomatic structure of the analytical shock mechanics more 
closely. Thereafter the analytical results are compared with results from the simulations during 
a one-dimensional planar situation. By comparing the analytical shock solutions with the 
Autodyn solutions, we find that the density, pressure and shock velocity are in good agreement 
with the results from the analytical theory. The energy in the shock shows deviations from the 
analytical results. The reason for this is probably related to the use of artificial viscosity 
inherent in the Autodyn code since by using different values for the viscosity coefficients we 
achieve different results for the energy.  
 
We present the analytical shock theory more intuitively than usually seen in the literature. In 
appendix we provide a more rigorous mathematical presentation. 
 
The discrepancy between the analytical and numerical solution for the shock energy, show that 
carefulness is necessary when using the Autodyn hydro code for shock impact problems. 

2 THE CONSERVATION LAWS 

The conservation laws includes three different equations; i) The conservation of mass, ii) the 
conservation of momentum and iii) the conservation of energy. These three equations will be 
analysed more closely in the following sections.  

2.1 What is a shock?  

Consider a situation where a sharp pulse is moving in a given frame of reference. A shock can 
be considered as: 
 

i) A sharp rise in the pressure ( or other variables) that cannot be described within a 
chosen theory of continuum mechanics due to grid resolution. The continuum 
model includes viscosity and heat conduction.  

 
To study the shock phenomenon two different approaches are presented in the literature: 
 

i) An analytical mathematical shock theory is proposed to describe the shock 
phenomenon. 

ii) The continuum model is changed by adding large artificial viscosity. 
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We will in this section present the fundamental equations for the analytical shock model for 
approach i). Autodyn is believed to present approach ii).  

2.2 Mass conservation 
Consider a long tube where a rigid piston is moving with constant velocity ν. 
 
 

U

ρ0 

ν

Piston 

ρ

ν0

Shock wave  
 
 
 
 
 
 
 
Figure 2.1:  Piston moving along a long  tube. 
 
Let U be the velocity of the shock moving in front of the piston. Let ρ0 be the density in front 
of the shock. Let ν0 be the velocity in front of the shock. Finally let ρ be the density behind the 
shock. During a short time interval ∆t the mass passing into the shock and out of the shock is 
given by  
 

( ) ( )0 0,out innm U v A t m U v Aρ ρ= − ∆ = −  (2.2.1) 

 
where A is the frontal area of the shock. Mass conservation gives that 
 

( ) (0 0,
mod

inn outm m U v U vρ ρ= ⇒ − = −  (2.2.2) 

 
where mod means model assumption. Equation  (2.2.2) can easily be rearranged to the 
following different relations 
 

( ) ( )
0

0
0 0 0

0 0
0 0 0

( )
, ( ), , ( ), 1 , ( ), 1 , ( )

1 1

v v
v v v vU a U v b c v v U v

U v 0 d

ρ
ρρρ

ρ ρ ρ ρ
ρ ρ

−
− − ⎛ ⎞

= − = − = − = − −⎜ ⎟− ⎝ ⎠− −

 (2.2.3) 
 
Since the density behind the shock is larger than the density on front of the shock it follows 
directly from (2.2.3d) that  U . Thus the shock is running ahead and faster than the piston.  v≥
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)0)

P0 

p ν 

x x 

Shock wave 

Figure 2.2: The pressure and velocity along the tube. 

2.3 The momentum conservation 

The momentum conservation through a shock is given as  
 

( ) (0 ( ) (
mod

out innp p A t m U v m U v− − ∆ = − − −  (2.3.1) 

 
Inserting the relation for the masses given in (2.2.1) gives directly from (2.3.1) that 
 

( ) ( )
( ) ( )
( ) ( )

0 0 0 0

0 0 0 0 0

0 0 0

( ) ( )

( ) (

p p U v U v U v U v

v U v v U v U U v U U v

v U v v U v

ρ ρ

ρ ρ ρ ρ

ρ ρ

− = − − − − −

= − − − + − − −

= − − −

)  (2.3.2) 

 
Further we can easily transform (2.3.2) by using (2.2.2) to the following equations 
 

( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )( )

2 2
0 0 0

2
20 0

0 0 0 0 0 0 0
0

1/ 2
1/ 20

0 0 0 0
0 0

, ( )

1 / , ( )
1 /

, ( ), 1 / / , ( )
1 /

p U v p U v a

v v
p p U v v v U v b

p pU v c v v p p d

ρ ρ

ρ
ρ ρ

ρ ρ

ρ ρ ρ
ρ ρ ρ

+ − = + −

−
− = − − = = − −

−

⎛ ⎞−
− = − = − −⎜ ⎟⎜ ⎟−⎝ ⎠

0

ρ ρ  (2.3.3) 

 
If the velocity and the pressure in front of the shock are zero (2.3.3) gives the well known 
equation 
 

(
2

20
0 0

0
1 /

1 /
vp Uv Uρ )0ρ ρ ρ

ρ ρ
= = = −

−
ρ  (2.3.4) 
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Thus the pressure behind the shock is given as the density in front of the shock times the velocity 
behind the shock times the shock velocity. 
 
Observe that in general the pressure behind the shock is given when all quantities are given in 
front of the shock together with the velocity behind the shock and the shock velocity. By using the 
equation of state for the material, only one quantity is needed behind the shock to solve the shock 
equations completely. Further assume 
 

0 0,p p p ρ ρ= + ∆ = + ∆ρ  (2.3.5) 
 
Inserting (2.3.5) into (2.3.3c) gives that 
 

( ) ( )( ) ( )( )

( )( ) ( )

( )

1/ 2 1/ 2

0
0 0 0 0 0

1/ 2
1/ 2

2 00 0 0

1/ 2

0

1 / 1 1/ 1 /

1 / ..1 1 / ( / ) ..

1 /(2 ) ..

p pU v

p

p

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρρ ρ ρ ρ ρ

ρ ρ
ρ

⎛ ⎞ ⎛∆ ∆
− = =⎜ ⎟ ⎜⎜ ⎟ ⎜− + ∆ − + ∆⎝ ⎠ ⎝

⎛ ⎞
⎛ ⎞∆ ∆⎜ ⎟= = ⎜⎜ ⎟ ⎜ ∆ − ∆ +− −∆ + ∆ +⎜ ⎟ ⎝ ⎠

⎝ ⎠

⎛ ⎞∆
= + ∆ +⎜ ⎟∆⎝ ⎠

p

⎞
⎟⎟
⎠

⎟⎟  (2.3.6) 

 
Thus to lowest order the shock velocity is equal with the shock adiabatic sound speed. More 
generally we have that 
 

( )
2

0 0

( ) ( )( ) p pU ρ ρ ρρ
ρ ρ ρ ρ

⎛ ⎞ ∂
= ≥⎜ ⎟ − ∂⎝ ⎠

 (2.3.7) 

 
Further, observe that if the equation of state is independent of the temperature, the density behind 
the shock is given directly from (2.3.3d) by solving for the density when the velocity is given.  If 
for example 0( ) ( / 1)p Kρ ρ ρ= − , it follows from (2.3.3d) when 0 0 0v p= =  that 
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( )

( )
( )

2

2
1/ 20 02 2

0 0 0

2
0

1/ 22
1/ 2

0 00
2

0

0 0

( ) 1 1
2 1 0, 1

1 ,
2

1 / 1 ... , 1 1,
/

2 ... , 1 1,

def

p K
v a

v
K

vv K
K

v
K

ρ ρρ
ρ ρ ρ ρ ρλ λ λ
ρ ρ ρ ρ ρ

ρλ

ρ ρρ
ρ ρρ

ρρ ρ
ρ ρ

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = ⇒ − + = ⇒ = ± −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= + = + + − <<⎜ ⎟

⎝ ⎠

⎛ ⎞
≈ + + − >>⎜ ⎟

⎝ ⎠

, ( )

s

m s

m s

m s

m s

 (2.3.8) 
 
To check the simulation results we first apply the linear equation of state for different bulk 
modulus. For a given piston velocity the density is found by solving (2.3.8a). The pressure is 
found by inserting the density and velocity into equation (2.3.3b) (or the equation of state can be 
used directly). Finally the shock velocity is found by inserting into (2.3.3c). Thus 
 

3 3 8
0

3 3 9

3 3 9

3 3 9
0

)

1.50 10 / , 7.50 10 ,

1000 / , 5.60 10 / , 2.04 10 , 1360 / ,

1000 / , 5.59 10 / , 2.05 10 , 1370 /
)

1.50 10 / , 7.50 10 ,

1000 /

sim sim sim sim

theo theo theo theo

sim

A

kg m K Pa

v m s kg m p Pa U m

v m s kg m p Pa U
B

kg m K Pa

v m

ρ

ρ

ρ

ρ

= ⋅ = ⋅

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

= ⋅ = ⋅

= 3 3 9

3 3 9

3 3 7
0

4 3 9

, 2.34 10 / , 4.17 10 , 2800 / ,

1000 / , 2.34 10 / , 4.19 10 , 2790 /
)

1.50 10 / , 7.50 10 ,

1000 / , 3.27 10 / , 1.56 10 , 1

sim sim sim

theo theo theo theo

sim sim sim sim

s kg m p Pa U

v m s kg m p Pa U
C

kg m K Pa

v m s kg m p Pa U

ρ

ρ

ρ

ρ

= ⋅ = ⋅ =

= = ⋅ = ⋅ =

= ⋅ = ⋅

= = ⋅ = ⋅ =
4 3 9

040 / ,

1000 / , 3.29 10 / , 1.57 10 , 1050 /theo theo theo theo

m s

v m s kg m p Pa Uρ= = ⋅ = ⋅ =

 (2.3.9) 

 
Observe the close agreement between the simulations results from Autodyn and the theoretical 
analytical theory.  
 
Further, adding a second order term to the equation of state we achieve that 
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( )

2
1 0 2 0 1

2
1 0 2 0

02

3 2 2
01 1

0 2 0 2 2 0 2

( ) ( / 1) ( / 1) ,

( ) 1 ( / 1) ( / 1) 1

23 3

p a a K a

p a a
v

va a a
a a a a

ρ ρ ρ ρ ρ

ρ ρρ ρ ρ ρ ρ
ρ ρ
ρ ρ

ρρ ρ ρ
ρ ρ ρ

= − + − =

⎛ ⎞ ⎛ ⎞
− − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ − + − + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0

1 1 0

−
⇒  (2.3.10) 

 
Solving this third order equation for 0/ρ ρ  and inserting into the shock velocity and pressure 
relation gives that 
 

3 3 8 8
0 1 2

3 3 9

3 3 9

3 3
0 1

)
1.50 10 / , 7.50 10 , 7.50 10 ,

1000 / , 3.62 10 / , 2.56 10 , 1700 /

1000 / , 3.62 10 / , 2.56 10 , 1710 /
)

1.50 10 / , 7.50 10

sim sim sim sim

theo theo theo theo

A
kg m a Pa a Pa

v m s kg m p Pa U m s

v m s kg m p Pa U m s
B

kg m a

ρ

ρ

ρ

ρ

= ⋅ = ⋅ = ⋅

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

= ⋅ = ⋅ 9 8
2

3 3 9

3 3 9

, 7.50 10 ,

1000 / , 2.31 10 / , 4.27 10 , 2840 /

1000 / , 2.31 10 / , 4.27 10 , 2850 /
sim sim sim sim

theo theo theo theo

Pa a Pa

v m s kg m p Pa U m s

v m s kg m p Pa U m s

ρ

ρ

= ⋅

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

 (2.3.11) 

 
Again the agreement between the numerical and analytical solutions is very good. 
 
Assume that for some reason the experimental results give  
 

1 1U c s v= +  (2.3.12) 
 
where  and  are two constants. The shock adiabatic relation is now easily found. First using 
(2.3.12) and (2.2.3b) gives  

1c 1s

 
0

1

1 1
0 0

1

1
, ( )

1 1 (1 )

c
vU c s v v a

s

ρ
ρ

ρ ρ
ρ ρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠= + = ⇒ =
⎛− − −⎜ ⎟
⎝ ⎠

⎞
 (2.3.13) 

 
Thus from (2.3.4) when inserting (2.3.13a) 

2 0
0 12

0
2

0 0
1

1

1 /
1 (1 )

c
vp

s

ρρ
ρρ

ρ ρ ρ
ρ

⎛ ⎞
−⎜ ⎟

⎝= =
− ⎛ ⎞

− −⎜ ⎟
⎝ ⎠

⎠  (2.3.14) 
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Observe that the pressure reaches infinity for the density 
 

1
0

1 1max
s

s
ρ ρ=

−
 (2.3.15) 

 
Our final conclusion in this section is that Autodyn gives good results for the pressure, density 
and shock velocity during a shock. In the next section we analyse the internal energy. 

2.4 The energy conservation  

Stating a kind of Bernoulli equation most easily shows the energy conservation. Thus we have 
that 
 

20
0 0 0

0

1 ( ) (
2 2

p pe U v q e U
ρ ρ

+ + − + = + + − 21 )v  (2.4.1) 

 
0e  and  is the internal energy of the substance before and after the shock.  is the energy 

release during a shock due to a chemical decomposition. If 
e 0q

0 0 0v p= =  we have from (2.4.1) that 
 

2 2
0 0 0

1 ( )
2 2

pe e vU v q e v U v vU v q e v q
ρ

= + − + − = + − − + − = − −2
0

1  (2.4.2) 

 
Thus 
 

2
0

1
2

e e v q− = + 0  (2.4.3) 

 
This equation simply says that the energy at the rear of the shock equals the kinetic energy of 
the particle plus a term related to the chemical decomposition. By using (2.3.8) we also have 
that 
 

02
0 0

( ) 1
1
2 2

p
e e v q q

ρρ
ρ
ρ

⎛ ⎞
−⎜ ⎟

⎝ ⎠− = + = + 0  (2.4.4) 

 
The  “shock energy” can be compared with the adiabatic energy given by 
 

0 02
0

( ( '), ')( , ) ' , ( )
'

p Te T e d q T T
ρ

ρ

ρ ρρ ρ
ρ

− = + =∫ 0 0ρ  (2.4.5) 

 
For a given equation of state this gives a special solution for ( ')T ρ ;the adiabatic.  
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As an example consider the simple relation 0 0 0( , ) ( ), 0ve T e c T T qρ = + − = . Inserting into 
(2.4.5) gives for the Poisson adiabatic (a) and the shock adiabatic (b) for the linear equation of 
state 
 

( )( )0 02
0 00

2

0
02

0
0

1 1' ( ) ' / / 1
' '

1
1'' ( ) , ( )
2 2

theo v

theo v

Ke c T T K d Log

Ke c T T v b

ρ

ρ

ρ ρ ρ ρ ρ
ρ ρ ρρ

ρρ
ρ

ρ ρ

⎛ ⎞ ⎛ ⎞
∆ = ⋅ − = − = + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞
−⎜ ⎟⎛ ⎞ ⎝ ⎠∆ = ⋅ − = = ⎜ ⎟

⎝ ⎠

∫ 0 , ( )a

5

5

5

 (2.4.6) 

 
Comparing simulations results with theoretical values we achieve for the linear equation of 
state that 
 

5 5 ''

5 5 ''

5 5 ''

) 5.82 10 / , ' 2.92 10 / , 5.00 10 /

) 5.20 10 / , ' 4.26 10 / , 5.00 10 /

) 5.69 10 / , ' 1.06 10 / , 5.00 10 /

sim theo theo

sim theo theo

sim theo theo

A e J kg e J kg e J kg

B e J kg e J kg e J kg

C e J kg e J kg e J kg

∆ = ⋅ ∆ = ⋅ ∆ = ⋅

∆ = ⋅ ∆ = ⋅ ∆ = ⋅

∆ = ⋅ ∆ = ⋅ ∆ = ⋅

 (2.4.7) 

 
Observe that the theoretical results for the energy deviate from the numerical results. Also 
observe that the “shock energy” is larger than the adiabatic energy. The reason for this is the well-
known fact that during a shock some amount of energy is released due to shear stresses. 
 
As the second example we again consider the non linear equation of state. Using (2.3.8), 
(2.3.4)-(2.3.5) gives for the shock adiabatic and the adiabatic that 
 

( )1 2 2
0 1 0 0 22

0 0 0 0

2 3

1 2
0 0

21 1 1 1' ( / ) ( / )

1 1
'' , ( )

2

theo

theo

a a ae Log a Log a a

a a
e b

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ

ρ

⎛ ⎞ ⎛ ⎞
∆ = + − + − − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∆ =

0

, ( )
ρ

5

5

 (2.4.8) 
 
Thus we achieve for the non linear equation of state 
 

5 5

5 5

) 6.00 10 / , ' 2.66 10 / , '' 5.00 10 /

) 5.22 10 / , ' 4.19 10 / , '' 5.00 10 /
sim theo theo

sim theo theo

A e J kg e J kg e J kg

B e J kg e J kg e J kg

∆ = ⋅ ∆ = ⋅ ∆ = ⋅

∆ = ⋅ ∆ = ⋅ ∆ = ⋅  (2.4.9) 

Observe that the theoretical results for the energy again deviate from the numerical results. 
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0

We believe that the reason for the unphysical simulations results is related to the artificial 
viscosity approach inherent in the code. To test this we have intentionally increased the two-
viscosity coefficient from their standard values. The linear equation of state was used for all cases. 
 
In the hydro code Autodyn the standard values for the two viscosity coefficients are: 

1 2: 0.2, : 1.Linear Quadraticµ µ= =  
 
For case A, linear equation of state, we tested: 

 
1 2

1 2

1) : 0.2, : 10.0(maximum value)
And
2) : 10.0(maximum value), : 1.0

Linear Quadratic

Linear Quadratic

µ µ

µ µ

= =

= =
 

 
When we increased 2µ  to 10.0 the internal energy, sime∆ , varied from (close to 

the impact) to (longer away). 

55.95 10 /J kg⋅
55.75 10 /J kg⋅

 
When we increased 1µ  to 10.0 the internal energy, sime∆ , varied in the following way: When 

the shock travelled in the material the internal energy jumped to (close to the 

impact) and (longer away) but increased linearly with time.  

55.90 10 /J kg⋅
56.25 10 /J kg⋅

 
For density, pressure and shock-velocity we achieve that:   
 

3 3 8
0

3 3 9

3 3 9

3 3 8
0

,1)

1.50 10 / , 7.50 10 ,

1000 / , 5.60 10 / , 2.04 10 , 1370 / ,

1000 / , 5.59 10 / , 2.05 10 , 1370 /

, 2)

1.50 10 / , 7.50 10 ,

10

sim sim sim sim

theo theo theo theo

sim

A

kg m K Pa

v m s kg m p Pa U m

v m s kg m p Pa U

A

kg m K Pa

v

ρ

ρ

ρ

ρ

= ⋅ = ⋅

= = ⋅ = ⋅ =

= = ⋅ = ⋅ =

= ⋅ = ⋅

= 3 3 9

3 3 9

00 / , 5.00 10 / , 1.75 10 , 1440 / ,

1000 / , 5.59 10 / , 2.05 10 , 1370 /
sim sim sim

theo theo theo theo

m s kg m p Pa U m s

v m s kg m p Pa U

ρ

ρ

= ⋅ = ⋅ =

= = ⋅ = ⋅ =

s

m s

m s

 

 
Thus for case A,2) also the pressure and the density deviates from the analytical solution.  

3 CONCLUSIONS 

By comparing the analytical shock solutions with the Autodyn solutions, we find that the 
density, pressure and shock velocity are in good agreement with the results from the analytical 
theory. But, we find that the energy at the rear of the shock show large deviations from the 
analytical results. The reason for this is probably related to the use of artificial viscosity 
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0

inherent in the Autodyn code. Increasing intentionally the linear artificial viscosity coefficient to 
large values also influences the density and pressure behind the shock front. Carefulness must be 
addressed when using Autodyn hydro code for shock impact problems where the temperature 
or the energy is important for the solution. 
 
References 
(1) AUTODYN, Theory Manual, Revision 3.0 

APPENDIX A; THE MASS CONSERVATION   

The mass conservation is on tensor from written as 
 

( )/ i it vρ ρ∂ ∂ + ∂ =  (A1) 

 
Thus applying the standard rule  
 

[ ] [ ] [ ]/ , / ,t U x means step∂ ∂ → − ∂ ∂ →  (A2) 

 
gives for a planar one dimensional situation 
  

[ ] [ ] ( ) ( ) ( ) ( )1 2 1 1 2 2 1 1 20U v U v v U v Uρ ρ ρ ρ ρ ρ ρ ρ− + = ⇔ − − = − − ⇔ − = − 2v

ijδ

 (A3) 

 
where the subscript 1 denotes in front of the shock and the subscript 2 denotes behind the 
shock.  

APPENDIX B; THE MOMENTUM CONSERVATION 

The equation of motion can be written as 
 

( )/ ,i j j i j ij ij ijv t v v p sρ σ σ∂ ∂ + ∂ = ∂ = − +  (B1) 

 
From (A1) and (B1) it follows directly that 
 
( ) ( 0i

j i j ij
v

v v
t
ρ

ρ σ
∂

+ ∂ − =
∂

)  (B2) 

 
Using the rule in (A2) gives that 
 

[ ] ( ) ( )
[ ]

2 2
1 1 2 2 1 1 1 2 2 20 0

, 0

U v v p U v v v p v p

p s

ρ ρ ρ ρ ρ ρ

σ

⎡ ⎤− + + = ⇔ − − + + − − =⎣ ⎦
= − =

2 ,
 (B3) 
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)

 
Equation (B3) can also be written as 
 

( ) (2 1 2 2 2 1 1 1p p v U v v U vρ ρ− = − − −  (B4) 

 
Inserting (A3) in (B4) gives that 
 

( ) ( ) ( )( )2 1 2 1 1 1 1 1 1 2 1 1 ,p p v U v v U v v v U vρ ρ ρ− = − − − = − −  (B5) 

 
Observe that the pressure behind the shock is given when all quantities are given in front of the 
shock together with the velocity behind the shock and the shock velocity. 

APPENDIX C; THE ENERGY CONSERVATION 

The energy equation can be written as 
 

( )/ j j ij j i i ie t v e v T qρ σ κ∂ ∂ + ∂ = ∂ + ∂ ∂ +  (C1) 

 
e is the internal energy, T is the temperature and q is a  energy generating source. From (A1), 
(B1) and (C1) is it easy to verify that 
 

2 21 1/
2 2i j i j ij i jv e t v e v v T qρ ρ ρ ρ σ κ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ + ∂ + ∂ + − − ∂ +⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠ ⎝ ⎠⎝ ⎠
0=⎟  (C2) 

 
Applying the standard rule in (A2) gives from (C2) that 
 

[ ]2 21 1 0, 0
2 2

U v e v e v pv q Tρ ρ ρ ρ⎡ ⎤⎡ ⎤ ⎛ ⎞− + + + − + = ∂⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
=  (C3) 

 
Thus 
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( )

2 2
1 1 1 1 2 2 2 2

2 2
1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2 1 2

2 2
1 1 1 2 2 2 1 1 1 2 2 2

1 1 2 2 2 1

2
1 1 1 2 2 2 1 1 1

1 1
2 2

1 1 0,
2 2

1 1( ) ( ) ( ) ( )
2 2

( ) ( )
1 1( ) ( ) ( )
2 2

U v e v e

v v e v v v e v p v p v q q

e v U e v U v v U v v U

p v U p v U U p p

e v U e v U v v U

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ ρ

⎛ ⎞− + − −⎜ ⎟
⎝ ⎠

+ + − − + − + − =

= − − − + − − −

+ − − − − −

= − − − + − −

( ) ( )( )

2
2 2 2

1 1 2 2 2 2 2 1 1 1 1 2

( )

( ) ( )

v v U

p v U p v U U v v U v v U q q

ρ

ρ ρ

−

+ − − − + − − − + − = 0,

 (C4) 

 
By inserting using the equation of mass conservation in (A3) into (C4), we reach after dividing 
with 1 1( )v Uρ −  
 

( ) ( )( )
( )

( ) ( )

2 2
1 1 1 2 2 2 1 1 1 2 2 2

1 1

1 1 2 2 2 2 2 1 1 1 1 2

2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2

1 1( ) ( ) ( ) ( )
2 2 / ( )

( ) ( )

1 1/ ( ) / ( ) / ( ) / ( )
2 2

e v U e v U v v U v v U
U v

p v U p v U U v v U v v U q q

e p U v q U v e p U v q U v

ρ ρ ρ ρ
ρ

ρ ρ

ρ ρ ρ ρ

⎛ ⎞− − − + − − −⎜ ⎟ −⎜ ⎟
⎜ ⎟+ − − − + − − − + −⎝ ⎠

⎛ ⎞= + + − + − − + + − + − =⎜ ⎟
⎝ ⎠

0

 (C5) 

APPENDIX D; NUMERICAL GRIDS 

In the simulations two numerical grids were used. A Lagrange grid (1000 mm length and 100 
width mm) is moved into a Euler grid (1000 mm length 100 width) with a constant axial 
velocity of 1000 m/s  for all times. The Lagrangian grid is thus un-deformed. The Lagrange 
grid was divided into 251*26 numerical cells and the Euler grid was divided into 1001*101 
numerical cells. Figure D1 shows a cross-section of the numerical setup. For post processing 
the results a number of  100 “Target points” were put into the Euler grid along the centre line 
of the grid. The different target points show approximately the same values. 
 
The material in the Lagrange grid was steel. In the Euler grid the following values were 
applied (Case 1):   
Equation of state            :  Linear/Polynomial 
Reference density     (g/cm3):  1.50000E+00 
Bulk Modulus          (kPa)  :  7.50000E+05 
Reference Temperature (K)    :  2.73000E+02 
Specific Heat (C.V.)  (J/kgK):  1.00000E+03 
STRENGTH MODEL               :  None (Hydro)      
FAILURE MODEL                :  None              
Erosion model                :  None 
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Figure D1: Cross-section of the numerical grids. Rigid Lagrange grid with velocity 1000m/s., 
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