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(U) Summary

This report is about the validation of a method, based on a Parabolic Equation model, for predicting
acoustic noise. The method is designed for the low-frequency, long-ranging noise induced by heavy
weapons and explosions. It is able to take detailed meteorological information into account, which is
important for this application. Hundreds of relevant blast wave measurements are available from the
Norwegian Trials campaign at Finnskogen. Fairly detailed weather data are also available from the
campaign. We have compared our simulations with measurements from Finnskogen, and made the
following main conclusions:

1. The PE model worked as well as can be expected given the parametric uncertainties.

2. Taking the weather into account is clearly necessary in noise mapping of heavy weapons.
3. The weather data improved the prediction accuracy of the PE model.

4. Prediction accuracy varied with weather type, season, distance and sound frequency.

A total of 299 unique combinations of detonation events and propagation paths have been considered,
some of which were simulated several times with different parameter settings. The selected events
were from six summer days and three winter days. Propagation distances varied from 1 to 23 km.
Wind and temperature profiles were obtained from measurements that used a tethered balloon.
Temperature inversions, which strongly influence sound propagation, occurred during both the
summer and winter experiments. In the process of selecting and analysing the shot recordings and
weather data, we found that there were errors and issues in the database registration, which are
specified in this report. Future users of the database should therefore especially consult our chapters
on shot selection and weather data.
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(U) Sammendrag

Denne rapporten omhandler validering av en metode, basert pa en Parabolic Equation-modell, for
prediksjon av akustisk stay. Metoden er designet for lavfrekvent langtrekkende stgy generert av
tunge vapen og eksplosjoner. Den kan utnytte detaljert meteorologisk informasjon, noe som er
sentralt for denne anvendelsen. Hundrevis av relevante lydmalinger er tilgjengelige fra Norwegian
Trials-kampanjen pa Finnskogen. Relativt detaljerte vaerdata er ogsa tilgjengelige fra kampan-
jen. Vi har sammenliknet vare simuleringer med malinger fra Finnskogen, og kommet til felgende
hovedkonklusjoner:

1. PE-modellen fungerte sa bra som en kan forvente gitt parameterusikkerhetene.
2. Ata hensyn til veeret er klart nedvendig for steykartlegging av tunge vapen.

3. Veerdataene forbedret ngyaktigheten til PE-modellen.

4. Prediksjonsnayaktigheten varierte med vaertype, arstid, avstand og lydfrekvens.

Totalt 299 unike kombinasjoner av detonasjonshendelser og propagasjonsbaner har blitt undersokt,
og noen av dem ble simulert flere ganger med ulike parameterverdier. De utvalgte hendelsene var
hentet fra seks ulike sommerdager og tre vinterdager. Propagasjonsavstandene varierte fra 1 til 23
km. Vind- og temperaturprofiler ble hentet fra malinger med vaersonde. Temperaturinversjoner, som
kan pavirke lydutbredelse kraftig, fant sted under eksperimentene bade sommer og vinter. Under
prosessen med & velge ut og analysere skudd- og veerdata fant vi at det er noen feil og problemer
med databaseregistreringen, som er spesifisert her. Fremtidige brukere av databasen anbefales
derfor & radfgre seg med denne rapporten, spesielt kapitlene om skuddseleksjon og veerdata.
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1 Introduction

Military training activity produces acoustic noise that can affect neighbours, necessitating the ability
to predict the noise dispersal. The software Milnoise serves as prediction tool for the Norwegian
Defence. Predominantly, outdoors acoustics is concerned with traffic and industrial noise. Heavy
weapons noise differs by being louder, lower in sound frequency and intermittent. In addition,
the propagation is nonlinear near the source. With this particular application in mind, we have
implemented a sound propagation model as presented in [[18]]-[[19]]. The purpose of this report is to
validate the model, and our implementation, against measurements.

By far the most suitable data set available is from the Norwegian Trials at Finnskogen in the
1990s. The sound sources used, C4 charges from 1-64 kg, resemble the military sources; the terrain
was predominantly Norwegian forest; the propagation distances were from 1-20 km. Weather data
were gathered with a tethered sonde up to a few hundred meters above ground level, and there are
data on the acoustic properties of the ground. The topography at the site is moderate, by Norwegian
standards, ranging 280-450 m above sea level with few steep features.

A schematic overview of our propagation model, a parabolic equation (PE) model, is shown in
Figure[I.1] Four categories of input data are indicated: source, weather, topography and ground
impedance. The output data are sound levels. The weather data are of particular interest, as our
main aim is to enable more detailed representation of refraction in the atmosphere.

The PE model is a rather established tool in outdoor acoustics, but most studies concern higher
frequencies and shorter distances. We expect the model to capture the refractive effects accurately
given precise weather data. Small scale turbulence effects may very well cause some difficulty,
though. The treatment of the ground and the near-source nonlinearities are actually less well
understood phenomena, however the resulting uncertainties may in practice be dominated by the
strong impact of atmospheric refraction.

Since the main objective is to validate the PE model, use as detailed weather data as possible.
In practice, meteorological data will always be a limiting element. Therefore, rather than as a
validation of the propagation model, an alternative interpretation of this work is as a study of the
predictive usefulness of the tethersonde data.

The report is organised in the following way: First, the Norwegian Trials data are introduced,
and we describe how recordings were selected. The weather and ground data are then discussed,
and interpreted as input data for the PE model. There is also a short section on source data. The
simulations for summer conditions are presented first. Sections[3.1}{3.2|discuss the simulations of 81
well documented cases from summer conditions. Those are perhaps the most important sections of
this report. The remainder of that chapter presents simulations that further illuminate the findings.
The winter simulations are presented in a similarly organised, separate chapter. Detailed plots of
simulations and measurements can be found in the Appendix. The remainder of this introduction
serves to introduce the propagation model, as well as some technical definitions.
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Figure 1.1 Overview of the model. The sound pressure is given by p = We™ k" /A[r. Colours indicate
relative sound levels for a 20 Hz harmonic source. The shown boundary condition is a bit
simplified.

1.1 Basic notions and definitions

Cylindrical symmetry around the source location is assumed in the model, hence the sound pressure
p is considered a function of time ¢, the horizontal distance r, referred to as range, and height above
ground z.

Fourier transforming in time, we get the complex pressure ps(r, z) for each frequency f. The
sound pressure level is defined as

2

Ly(f) = 1010g,|pf/pret| »  pret =2x 107 Pa. (1.1)
For a point source it can be decomposed as
L,(f)=Lo(f) - 1010g10(R/R0)2 + ALy, (1.2)

where L is the sound pressure level in a homogeneous free atmosphere at some reference distance
Ry, the second term is the geometric loss, and AL is called the relative sound level. Hence, AL ¢
contains all information about refraction, terrain and ground effects and is independent of the source.
Equation (T.2) is only valid for linear sound propagation out from a point source. Linearity may not
hold near the source, but the nonlinear effects are, as an approximation, incorporated in the source
data Ly. More details on source data can be found in [6]].

The sound exposure level (SEL) is defined by

_ _ 2
SEL = IOIOglotrelffm/preflzdt: 1010g10trelff|pf/]7ref| df, (1.3)

8 FFI-RAPPORT 16/00577



with the reference time #..f = 1 s and prer = 2 X 1073 Pa. All the calculations are performed in the
frequency domain. Frequencies are sampled over 12th octaves, i.e. f; =2/ /12 £, for integer j. The
sound exposure level in third octave bands SEL3(f.) for a center frequency f. are reported. We use
a standard trapezoidal rule to compute SEL3 from twelfth octave samples.

The third octave bands from 1-100 Hz are considered here. Some of these are inaudible, hence
it is common to ’C-weigh’ the data, meaning that a standardised high pass filter cutting off at 20 Hz
is applied. We denote the C-weighted SEL by SELC.

Sound gets refracted in the atmosphere due to variations in the sound speed c. We compute ¢
from air temperature 7 according to the relation

| T

The horizontal wind speed component « in the direction of propagation defines the effective sound
speed cef = ¢ + u. We use the so-called effective sound speed approximation, which consists of an
unmoving atmosphere with ¢ replaced by c.g. By wave number k we therefore refer to the effective
wave number 27 f / cef, strictly speaking.

The sound waves will interact with the ground, which is modeled as an impedance surface,
meaning that the normal derivative of the complex pressure satisfies

= ——=pf (1.5)

at the ground surface, with the complex specific impedance Z depending strongly on frequency.

1.2 The PE method

The details of the PE method are described in [[18]]-[19]. We use the wide-angle PE equation of
[11] (see [12]), with the exception that piecewise linear topographic profiles, rather than twice
differentiable profiles are considered. The main equations are included in Figure [[.Tl Some
numerical parameter choices for this study must be specified: The top of the domain was 15% of
range, but never less than 250 m. We used ’reduction of range-dependence’ as in [19] with an
accuracy threshold of 5 m. As a ’scattering threshold’ we generally used -35 dB, meaning that we
did not allow the relative sound level AL to drop below -35 dB.
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2 Norwegian Trials data from Finnskogen

The campaigns at Finnskogen took place in September 1994 and February 1996. The geometry of
the experiment is shown in Figure 2.1] C4 explosive was detonated at 2 m height on the locations
marked in red. Towers with microphones were situated at five locations (yellow), and there were
five weather towers with up to 30 m height (green). The tethersonde was operated at position
403. There are additional tethersonde data from positions 0 and 112, but we have not used them
since they had more limited coverage. The weather measurements are summarised in [4]. We have
accessed the Finnskogen data from the NORTRIAL database, described in [1]] and [2]], using the
well-documented Matlab interface that comes along with it.

2.1 Shot selection

The recordings that we selected are listed in appendix[A.4] and in this section the selection procedure
is described. Each shot recording in the database has been assigned a quality label in the Nortrial
database. Quality A recordings have a good signal-to-noise ratio and no other obvious issues.
Quality B1 recordings are considered reliable except that the signal-to-noise ratio may be an issue.
Other categories have not been considered here. In addition to quality labels, we have restricted
ourselves to the times when the tethersonde was operated. Histograms of propagation distances are
shown in Figure[2.2] We expect the farthest to be very challenging.

From summer 1994, we found 81 quality A cases that could be used. They are mostly from
microphone towers 306 and 112. By a ’case’ we mean a combination of a detonation event and
a receiver position. For many cases there is more than one recording from a tower. If so, we
picked the most elevated microphone. We have enumerated the cases according to the order they
appear in the database listing, which seems to be chronological for summer data, and by tower, then
chronological, for winter data.

The data from tower O appear not to be correctly registered, hence they were excluded. It
appears as if the sampling rate cited is off by about a factor of two, although there could be other
issues. This may have affected previous investigations of these data, and our advice is to ignore
results using tower 0. We have performed the simulations however, in case the correct data were to
be retrieved. This would add 46 quality A cases to the other 81.

From the winter trials, we have picked quality A data from February 21-23rd. We mostly
consider data from tower 306, of which there are 83 cases. There are 73 quality A cases from
212 and 412, however it is clear that the charge sizes have been incorrectly registered there. By
comparing to recordings of the same detonation events at 306, we have corrected the charges. This
is also an issue for the summer data, but there was only one mismatch (case 122) and two that could
not be verified (cases 40, 88), and it appears that we have gotten the charge sizes right.

A total of 61 quality B1 data from summer 1994 have briefly been considered. Since we had
limited time to verify the quality, only those with SELC>70 dB were picked, of which six cases were
excluded after inspection. Charge sizes were incorrect for many of these cases, and we excluded
those were data entries disagreed.
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Figure 2.2 Histograms of propagation distances. Top: Summer quality A, 81 cases, Middle: Winter
quality A from tower 306, 83 cases. Winter quality A, other towers, 73 cases.
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2.1.1 Signal duration

The duration of the recordings varied, and could last up to 15 seconds. The actual blast wave signals
may have lasted up to a few seconds at long range, but often they were much shorter. Integrating
over the whole recording could lead to overestimation of the SEL3 values because of noise. We
therefore devised a very simple truncation algorithm: The timing #,, of peak pressure was identified,
and then the surrounding time interval 1, —a <t < t, + b was selected. For the summer quality A
data, we set a = 0.5 s and b = 2 s. The resulting SEL3 spectra were practically identical to those
using the whole recording. For the winter recordings, this was not the case, and we also changed
the parameters to a = 1 s and b = 1.5 s, in order to accommodate some oddly shaped blast waves.
These parameters were also used as control for the summer B1 data, and that gave small deviations
from the untruncated recordings. Ideally, the B1 data should have been treated individually.

2.2 Weather data

The selected summer measurements are from six days in 1994. From September 13-14th, which
seems to have featured cloudy weather and little temperature variation; and September 19-22nd,
when the weather was clear with temperature inversions in the morning and large temperature
variation throughout the day. An example of this weather type is shown in Figure[2.3] Winds were
weak to moderate near ground, but 'low level jets’ were observed at a few hundred meters height.
These probably had significant impact on propagation, including during temperature inversions.
The winter measurements were selected from February 21-23rd. The weather was then calm and
clear with deep inversions, and large temperature variation throughout the day.

2.2.1 Tethersonde data interpretation

The tethersonde measured temperature, wind and wind direction at times #; and heights z; above
ground. We used the Matlab interpolation routine ’griddata’ to turn this into a map of the atmosphere
across a continuum over ¢ and z. The result for one single day is shown in Figure 2.3] This
interpolation routine responds strongly to how the parameters are scaled. We found through trial
and error that dividing z with 5000 m/day gave reasonable looking results. Above the reach of the
sonde we set wind and temperature constant.

For use in a propagation model, this two-dimensional map has to be reinterpreted into a
four-dimensional map over time and space. The simplest strategy would be to follow the terrain, i.e.
assume the meteorology is only a function of time and height above ground. A second strategy is to
assume the meteorology is a function of time and altitude, i.e. height above sea level, only. This is
likely a decent approximation except near the ground, and was our primary strategy. Exceptions
were made for the following reason: The 403 station, where the sonde was operated, was at 320 m
elevation, whereas station 306 was in a valley bottom at 280 m. As a solution, we let the weather
follow the terrain whenever the ground elevation was below 320 m.

The tethersonde captured many details that were either intermittent fluctuations or just spurious
artifacts. Neither are likely to be very useful for us, hence we applied some smoothing in the vertical
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Figure 2.3 Top: Wind speed (m/s) as a function of time and height above ground on September 21st
1994. The tethersonde height is indicated by the black curve. Bottom: Temperature (°C)
on September 21st.
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direction to the data. The smoothing simply consisted of a running average. Unless otherwise noted,
the temperature data were averaged over a 50 m window, and the wind data over 300 m. Another
typical way to deal with this problem is to fit some function, such as a lin-log profile, to the data,
but due to the large variety of observed profiles, smoothing seemed a better, less intrusive, option.

The summer tethersonde data were available in a postprocessed form in NORTRIAL, and we
chose those. On September 21st there was a problem with the postprocessing, therefore the raw
temperature data had to be used for that day. From the winter trials only unprocessed data were
available. They were of course a bit noisier. The Matlab code we wrote to treat and interpolate the
sonde data is included in appendix [A.3] for completeness. There were many specific ’glitches’ in
the data that we corrected individually, and they are best listed in this way.

The lowest 10 m above ground, i.e. 320-330 m elevation, were not covered by the sonde data.
We let the temperature be constant here, and let the wind taper off linearly to zero in the lowest 10
m above ground level. We also tested some surface layer models for the lowest few tens of meters
above ground, and they are described later.

2.3 Ground data

It is crucial to have reasonably accurate values for the ground impedance Z. We calculated ground
impedances from rigid porous medium models, based on parameters found in the database.

2.3.1 Summer

It is rather well-established that the Delany-Bazley model, although widely used in outdoor acoustics,
is unsuitable for low frequencies, see e.g. [[16] and [17]. We used a Taraldsen model ([[17], [5])
instead. It requires one input parameter, the resistivity o~. The database provides a classification of
the ground at Finnskogen, along with suggested values of ¢, based on [14] and [15], see Figure 2.4]
We used a halfspace model, as we had little information about vertical structure. Mostly the backing
layer consisted of hard moraine. We suspect that deeper and more reflective layers played some role
for infrasound at least at tower 112, based on looking at the spectra. At tower 306, sand sediments
made up the backing layer. It has been demonstrated that this could lead to seismic effects ([10],
[8]), which we have not attempted to include, partly because it may be difficult or impossible to
model with an impedance boundary condition.

2.3.2 Winter

Snow 30-40 cm deep was reported from the winter trials, with significant terrain variability. Snow
is expected to have a strong impact on sound levels in a way that is challenging to model. We tried
to model the snow-covered ground as a rigid, homogeneous layer with a hard backing, as described
in [5] and [12]]. The Zwikker-Kosten model ([21], [12]) was chosen for the porous medium. This
leaves three parameters to be chosen: resistivity o, porosity Q and snow depth d. Some clues to
appropriate values were found in [13], however there seemed to have been a lack of data below

FFI-RAPPORT 16/00577 15



Figure 2.4

Ny klasse 0 (FFI klasser 0.2.5) : Barskog i forskjellige arsklasser, tettvokst stor
barskog. ungskog pa tidligere hogstfelt. Typisk overflate stremningsmotstand i
denne typen skogsbunn er 30 000 Pa-s/m2 .

Ny klasse 1 (FFI klasser 3.4) : Flere ar gammel glissen skog pa tidligere
hogstfelt, hogstfelt med eventuelt innslag av fretreer. Litt usikkert angaende
typiske impedansverdier, men for tett, torr torv eller tynt moselag over
sandaktig jord. kan verdien for stremningsmotstand vare ca. 100 000 Pa-s/m2.

Ny klasse 2 (FFI klasser 8.9) : myr eller myrlignende vegetasjon. Dette er
fuktig myr med tykt, moselignende vegetasjon. Typisk overflate
stromningsmotstand er 15 000 Pa's/m2.

Ny klasse 3 (FFI klasser 6.7.10.11) : Grasbakke, myr. apent lende. dyrket
innmark. kultivert grassland. eng. dyrket innmark. Typisk overflate
stremningsmotstand er 350 000 Pa-s/m2.

Ny klasse 4 (FFI klasse 1) : Vann. Overflate stremningsmotstand er svert hoy,
fungerer som “hard flate™ akustisk sett. Stremningsmotstand ca 20 000 000
Pa-s/m’.

Ground classification. Values of specific resistivity o are given. Classes 0-1 are forest
types, 2 marsh, 3 open country and 4 water.

40 Hz. We ended up with o = 8 kPas/m?, Q = 0.7 and d = 70 cm. Obviously, the latter choice
deviated from observed depths. On the other hand, the resulting impedance values captured the low
frequency effects quite well, which was most important, since the main goal was to study the PE
model and the weather data.

24 Source spectra
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Figure 2.5 The source spectra used.

The source model is the so-called FOFT model described in [7]. The FOFT model is described
for TNT, so we applied a conversion factor of 1.34 to the charge sizes. The model consists of a

16 FFI-RAPPORT 16/00577



FOFT cutoff radius. 1 kg C4.

M0

135_..2 . ........... P P ....... .....

130_ ......... ...... e

125 ' Cut at appr. 0.1 kPa |7

fA Cut at 1 kPa f Tl
120 15 e e e A R

SEL 3rd octave (dB)

115_..2 ........... B

110 i ; R A ; R
f{Hz)

Figure 2.6 Source spectra for 1 kg C4 for different ‘'nonlinearity criteria’. The picture looks similar for
other charges sizes.

blast wave from a free explosion evaluated at a range where the propagation is linear. The wave
is then propagated backwards linearly to a reference length ry. The range at which nonlinearities
can be ignored is open for interpretation. We have chosen a peak pressure of 1 kPa as a criterion.
The formulas indicate that it should rather be around 0.1 kPa, but at that range ground interaction
and refraction are certainly more important. These two strategies differ by a few dB in the source
spectra, as illustrated in Figure 2.6. Interesting experiments on ground interaction in the nonlinear
range are reported in [3]], where ground effects over grassland are observed already at 5 kPa.
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3 Summer conditions study

We have gathered spectra for all 81 quality A summer cases in appendix The third octave SEL
spectra from the PE simulations and the measurements can be compared for each case. For reference,
we have included two simpler models: (1) PE simulations without refraction and topography, which
resemble the Low Frequency Module currently implemented in Milnoise, and (2) a FOFT source
model with a double charge. The double charge is a simple way to take the ground into account,
because at close range most energy is reflected from the ground. Including this model in the plots
demonstrates the effect of the propagation conditions. Next to each spectrum plot, the sound speed
that was used in the simulation is shown as a function of altitude, with both the effective and the
thermal sound speeds included.

3.1 All A data

Figure 3.1 shows the SELC values for all 81 cases. Predicted SELC is plotted against measured
SELC. Hence, the prediction error can be read off as the vertical (or horizontal) distance to the
black diagonal line. The PE predictions (blue circles) were scattered fairly symmetrically around
the line, and the errors increased with decreasing SELC. The simple FOFT source model (light blue
dots) overestimated SELC with minor exceptions, as should be expected over soft ground. The
simple PE model (red dots) tended to underestimate. Both reference models deviated more for weak
received signals.
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Figure 3.1 SELC values, predicted vs. measured. All summer A data.

18 FFI-RAPPORT 16/00577



ED_ ................ ._ ................. LR ................. :
ED_ ..... V .......... .- ................. ...... O ......... .................
o @ ] o
_| .
o 0k IR NS REITERTE PR U T D
Dg @ ] & +
= + B [
s gl l. go‘é ........... Dty G X b
L] g &, - @
+* 8 e P O'D *
A0k ... 9":'"'0"% .......... ST L .
: .:_(3:) E . : PE flat, no reft.
o N Simple source model
20 1 1 1 .
0 0E i 15 & PE tethersonde, terrain
range (rm) 4

%10

Figure 3.2 Signed prediction error in SELC vs. range. All summer A data.

Figure [3.2] shows the signed prediction errors in SELC plotted against range r. The sign
convention, which is used throughout this report, is such that positive values mean overprediction
of sound levels. The errors were smallest at 1 km, and seem to increase until 6 km, beyond which
there is no obvious pattern. It seems that the influence of the propagation conditions increased with
range, as the three models increasingly deviated.

Figure [3.3] contains the error in SEL3 for all A data. The most striking feature is below 10 Hz,
where the measurements at tower 306 consistently showed a strong sound reduction of up to tens
of dB. As far as we know, there is no theoretical nor observed precedence for this phenomenon,
hence it is best disregarded for now. The effect was evident also in [16]], and, along with the above
mentioned issues with tower 0, it can explain the difficulties reported there below 10 Hz. At tower
306, seismic effects have been predicted in the infrasound range, but the predicted magnitude was
much smaller than the phenomenon observed here.

These experiments can not be regarded as statistically independent, and a statistical analysis
is beyond the scope of this work. Certain features are clear, however, from the average quantities
shown in Figures [3.413.5] Including weather improved both RMS (root mean square) error as well
as median error, and increasingly so with frequency. The bias towards underestimation caused
by ignoring weather is evident in the mean signed error. The variance of the error increased with
frequency when weather was included. The lack of a strong bias in the predictions agrees with
meteorological variability being the main source of uncertainty.

It is evident that weather and topography became more important as frequency and range
increased. Hence, up to a certain range, a simpler algorithm such as the Milnoise LF module should
suffice. Quantifying when and where is nontrivial, but the data may give us a clue. The band 1-25
Hz is regarded as particularly challenging, hence we consider the 25 Hz 3rd octave band. Figure[3.6]
plots, against range, the differences in SEL3 between the full and the simple PE simulations. There
are clear deviations at 2 km, and at 4 km, meteorology very obviously must be taken into account.
At shorter ranges, ground interaction, or perhaps some other issue such as source modelling, are at
least as critical as meteorology.
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Figure 3.3 Signed error in SEL3. All summer A data.
3.2 Weather types

The accuracy of sound propagation models should be expected to depend on the weather type. The
accuracy of the weather forecast may vary with type, and the influence of atmospheric turbulence
can be large when upward refraction or ground effect dominates.

As weather type indicators we chose the temperature gradient T = AT /Az, evaluated as the
change from 600 to 330 m altitude, and the wind component U in the direction of propagation at
600 m altitude. We also considered the effective sound speed gradient Aceg/Az, evaluated at the
same heights as temperature. A scatter plot of the weather indicators for each case is provided in
Figure[3.7] Cases with temperature inversion, i.e. with positive 7, were clearly separated, so we
let them form one class. Downwind there will typically be some downward refraction, hence we
divided the remaining cases at U = 2 m/s. The SEL3 errors are all plotted in Figure 3.8 with one
colour for each weather type. The inversion cases were best captured, and the upwind/neutral cases
the worst with a lot of underestimation. The latter was not unexpected.

Figure[3.9]shows the RMS errors for each weather class. It is evident that weather is crucial
during inversion as well as downwind, while otherwise the weather data does not improve the
RMS error much. Figure [3.TT|shows SELC for each weather type. The SEL3 values at 32 Hz can
be seen in Figure [3.10] The significance of weather is very clear at this frequency. The simple
PE model underestimated during the downward refracting weather types. The full PE model
clearly handled those weather types better, except for some long-range downwind cases, which
were overestimated. The upwind/neutral situation is less clear: At longer range, the weather data
enhanced underestimation, while at shorter range, they seem to have been quite useful. Generally,
precision was much better for received SEL3 values above 80 dB than below.

SEL3 values for each of the three weather classes is provided as scatter plots in[A.THA3] with
one plot for each third octave band. The observations we have stated for 32 Hz hold generally. We
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Error in SEL3

Figure 3.8 RMS prediction error vs. f. Solid lines: Full PE, dashed: simple PE. Red: Inversion, green:
downwind, blue: neither. Circle sizes are proportional to range. Summer A data.
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Figure 3.9 RMS error for different weather types. Red: inversion, green: downwind, blue uwind/neutral.

Solid lines are from the full PE simulations and dashed lines are from simple PE simulations.
Summer A data.
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Figure 3.10 SEL3 at 32 Hz for each weather type. Left: Upwind/neutral, middle: Downwind, right:
inversion. Summer A data.

also note a tendency towards over-prediction in the mid frequencies, perhaps to do with ground
interaction or source modelling. At the lowest frequencies ground interaction and possibly other
effects appear to have dominated over refraction in many cases.

3.3 Parameter variation

For this section, the numerical simulations of the summer quality A cases were repeated with
various changes in the input data. This serves for one thing to illustrate some of the parametric
uncertainty. A more ambitious aim is to determine which parameter choices are better.

3.3.1 Topography

As mentioned, the terrain profiles were gentle by Norwegian standards. Topography had a direct
effect, but it was relatively subtle. To illustrate this, we have performed the simulations without any
refraction: Once with and once without topography. Figure [3.12]shows the difference in SEL3 due
to including topography or not. Range and frequency played a role here as expected.

3.3.2 Vertical regularisation

The vertical smoothing of temperature and wind is a balance act between capturing the essential
features and excluding intermittent and/or spurious effects. As a less smoothed alternative we
averaged temperature over 15 m and wind over 50 m. The scatter plots for each third octave are
shown in[A.4HA.6l SEL3 values for 32 Hz are shown in[3.13] We find that the increased detail
tended to decrease accuracy, in some cases strongly so. In upwind conditions, detailed profiles may
improve the underprediction problem, but at the price of occasional overestimates. Our findings are
consistent with [20], in the sense that they recommend some averaging rather than instantaneous
profiles. We have also tried to average temperature over 50 m as above and wind over 100 m, but it
seems the rather large smoothing length of 300 m for the wind was favourable.
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Figure 3.14 RMS error in SEL3 for various surface layer models. Ranges less than 2.1 km. The SL
models were used up to 30 m, except log 10 m top80° which went up to 80 m.

333 Surface layer

The surface layer (SL) is likely to be very complicated at a forest location like Finnskogen. We
have still attempted some ways of taking it into account. Each attempt consisted of replacing the
tethersonde data in the lowest few tens of meters above ground. We have tested the following ideas:

1. ’lin10’. No treatment (except for the usual linear tapering of the tethersonde wind data, hence
the name).

2. ’log zo’. Wind is replaced a with logarithmic profile
u(z) = u(z,)log(z/zo + 1)/ log(z;/z0 + 1) (3.1)

with roughness length zo up to height z;.

3. ’aws N’. A lin-log fit to the data from a weather tower at position N. Wind below 30 m above
ground was then tapered to zero with the lin-log profile, keeping wind direction fixed. The
temperature below 30 m was changed so that the gradient equaled that of the lin-log profile.

The simulation output was quite sensitive to the surface layer model, particularly for the higher
frequencies. The scatter plots in Figure [A.13}{A.9]demonstrate this. None of the attempts seemed
to improve on the simple ’'lin10’ model. The weather tower-based surface layer profiles notably
increased the errors, which again shows that instantaneous, local profiles must be used with care.
Figure compares the RMS error at short range for each SL model. Only the short range cases
were included as they presumably are the most affected by the lowest parts of the atmosphere.

Looking at the weather tower data makes it clear that the SL profiles will vary a lot across the
terrain. Figure [3.15|compares the temperature gradient between 10 and 30 meters at three locations
over time. Most likely the profile depends a lot on local vegetation, and may behave somewhat
stochastically. The wind profiles appeared more predictable, as they fit logarithmic profiles. At
tower 0, a suitable roughness length seemed to be 10 m, while at 112, 2 m fit better. The ground
class data explain the difference as 112 was in a field, and O was in open forest. The weather tower
at 403 was inside dense and tall forest, and measured rather interesting profiles, as noted in [4].
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Figure 3.15 Temperature gradient between 10 and 30 m.

334 Sound speed following topography

An alternative extrapolation of the sonde data is to assume that the meteorology only depends on
height above ground. We show scatter plots from such a simulation in Figure[A.7} At 306 we had to
follow the terrain in any case, as already explained, therefore we only include data from tower 112
here. Results are not bad, but this alternative approach seems not to be very useful.

335 Scattering threshold

As mentioned, our scattering threshold was at -35 dB. Clearly, the sound levels still fall below the
measured values in some cases. Figure [3.16|shows the RMS error in SEL3 resulting from different
threshold values. For this statistic, the best choice was about -25 dB. Most likely, this should depend
on the propagation conditions.

3.4 B1 data

The selection of quality B1 data was also simulated. The resulting SELC values look much
as expected, see Figure We divided weather types into downward and upward refracting
according to the sign of the effective sound speed gradient. Ranges were either quite close at 2-4
km or above 10 km. The close range values were mostly well predicted, and the tethersonde data
seem useful except for the underestimation at long range during upward refraction.
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Figure 3.17 Selected B1 data. Top: downward refraction. Bottom: upward refraction.
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4 Winter conditions study

The spectra for the winter cases are included in appendix [A.2] We first discuss the recordings from
tower 306. Spectra for the cases with range 2 km are shown in Figure [d.1] These cases were used as
templates to find suitable impedance values. It is clear that the ground effect was remarkably strong
with a cut-off between 10 and 20 Hz. The cut-off was reasonably well captured by the simulations.
Above 20 Hz sound levels varied a lot with weather, which makes it harder to assess the accuracy of
the ground model.

All predicted SELC values are shown in Figure There are large deviations compared to the
summer cases. Without weather there was, as during summer, a bias towards underestimation. The
SEL3 errors for all cases are plotted in[4.3] Accuracy decreased with frequency. We note that the
unexplained damping of sound levels below 10 Hz is not present in the winter data.

The statistics in[4.4]1ook quite similar to the summer data, but RMS errors and biases are both
larger. It is still clear though, that the tethersonde data improved predictions.

Temperature inversions were deeper in winter, hence weather type indicators are evaluated
higher up: The temperature gradient T = AT /Az is the change from 820 to 350 m altitude. The
same applies for ce gradient. The wind indicator U is evaluated at 710 m altitude. Weather type
indicators are plotted in Figures f.5}4.6] For classification of weather types we simply divide into
upward and downward refraction according to the sign of the c.q gradient. SELC errors are plotted
against the ce gradient in Figure[.7] The RMS errors did not vary much between these two weather
classes, except that they were large for the simple PE model during downward refraction.

It is clear that the winter data are very challenging to model. This is, at least partly, due to the
snow cover. It may be that the strong ground damping made scattering effects more prominent.
Other possible explanations are that the postprocessing had been applied to the summer tethersonde
data and not the winter data, and that therefore there are more spurious features in the winter sound
speed profiles. Also, it may be that the weather conditions happened to be more challenging during
the winter trials. There was a larger proportion of long ranges in the winter data, which explains
some, but not all of the increased difficulty.

4.1 Parameter studies

A few variations of the simulation setup was attempted for the winter trials.

4.1.1 Ground impedance

Two ground impedance strategies are compared in Figure[A.12] Different snow depths are supplied
to the hard-backed Zwikker-Kosten model. Other parameters remain constant. The 35 cm choice
yields too large sound levels for the lower frequencies, but otherwise the results are practically
identical.
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Figure 4.1 Range 2 km at tower 306. 1 kg charges. Microphone heights vary. Blue lines are measure-
ments and black lines are simple PE simulations.
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Figure 4.3 Errors in SEL3 for all winter cases at tower 306.
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4.1.2 Surface layer

The simple ’1in10” model seems to outperform the logarithmic SL wind profile, see Figure[A.13]in
the Appendix.

4.1.3 Vertical regularisation

We tried out doubling the vertical smoothing lengths. Resulting SEL3 values at 64 Hz are shown
in Figure 4.8] The data are plotted against effective sound speed gradient. It seems that more
smoothing might be beneficial near neutral conditions, i.e. when the sound speed gradient is small.
For downward refraction, too much smoothing reduces precision. We remark that the logarithmic
surface layer tapering of wind was used for all simulations shown in The plots of the sound
speed in appendix [A.2] suggest that the unprocessed temperature data could be less reliable than
unprocessed summer data. Hence we tried an experiment with a 300 m smoothing window in both
temperature and wind speed. Results were markedly different, but none consistently better than the
other.

4.2 Data from towers 212 and 412

The remaining cases of quality A were from towers 212 and 412. As mentioned, the charge sizes
had to be retrieved from tower 306 data entries, hence we regard these data with enough suspicion
to treat them separately. SELC values are shown in Figure[d.9] There were 59 long distance cases
with range exceeding 10 km, and the remaining 15 were at 4 km or less. The third octave scatter

plots can be seen in Figures [A.T4{A.T3]

We note that four of the downward refraction cases are badly underestimated. These were at
ranges 22-23 km from around the same time. At this range one should expect that the tethersonde
data are insufficient, because there may be important downward refracting conditions higher up in
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Figure 4.9 SELC values at 212 and 412. Red: downward refraction, blue: upward.

the atmosphere, and also because the horizontal homogeneity assumption is less likely to be valid.
There are nine upward refracting cases that are badly underestimated. These are all from the same
14 km path (108->412) and around the same time, indicating that there is a weather feature that
is not captured properly. We note also a tendency towards overestimation of the stronger signals.
We believe this is due to ground interaction, because of deeper, or a different type of, snow around
these receiver locations. Indeed, we observe that the cut-off frequency is lower at tower 412 than at
306, when examining the spectra for the close range cases.
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5

Summary

We make the following conclusions from this validation study:

1. The PE model worked as well as can be expected given the parametric uncertainties.

Taking the weather into account is clearly necessary in noise mapping of heavy weapons and
explosions.

The tethersonde weather data improved predictions.

4. Model performance in summer was good during downward refracting conditions, and less

so during upward refraction. Difficulty with upward refraction is commonly observed in
outdoor acoustics, and believed to be due to scattering from turbulence.

The PE model with tethersonde data gave on average very good predictions, in the sense
that there was little modelling bias. There was one exception: At long range during upward
refraction, we observed strong underestimation. During downward refraction, there was on
average a few dB overestimation.

Ground interaction in winter was very strong and difficult to model.

Winter data were not as accurately predicted as summer data, at least partly due to the ground
interaction. Tethersonde data were still helpful.

The importance of weather increased with frequency and range.

9. Louder sounds were more accurately predicted than softer sounds. This has to do with both

10.
11.

12.

13.

range and refractive conditions.

The ground impedance data for summer conditions seemed to be fairly accurate.
Infrasound prediction required weather data from 2-4 km range. At closer range other effects
were equally or more important.

The level of detail to take into account from localised weather profiles needs to strike a
balance between capturing essential features and avoiding small scale fluctuations.

Surface layer modelling influenced the simulation results. Simple SL models were better
than using instantaneous profiles from weather towers.

Generalisation of these conclusions may be limited to the weather types tested; in particular, strong
winds did not occur during the experiments. Also, it should be noted that actual training activity
often takes place in somewhat more rugged terrain than at Finnskogen.

The main goal, to validate the PE model, has been addressed, and we have obtained additional
valuable insights. Even so, this study leaves many questions unanswered that could be addressed by
further investigation:

1.

Could more simple weather profiles be useful? It would be interesting, from a practical
viewpoint, to look at sound speed profiles based on reduced data, perhaps even purely based
on ground measurements.

How important is turbulent scattering? It is likely to be important due to the underestimated
long range upwind cases, although this could also occur due to the large scale sound speed
profiles being incorrect. A correlation study of closely timed detonations would clarify this.
What is the best way of modelling these scattering effects? This is an on-going research
field in outdoor acoustics. Current methods are computationally expensive, and have limited
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applicability to complicated long-range scenarios. Hence, this is a rather challenging question.
Perhaps some empirically based statistical strategy should be sought, such as in [9]].

4. How can the surface layer best be handled? This question is closely connected to the previous
one.

5. Can the ground impedance values be improved? For summer, this might be possible from
looking at short range cases.

6. How should ground impedance be computed over snow? This is certainly worth more
attention, although it seems to be a very challenging topic.

7. Why are the winter data less accurately predicted than the summer data? Extreme, possibly
inaccurate, impedance values in combination with scattering effects seem very likely reasons.
It could also be related to the weather data, but that is difficult to judge without understanding
the ground interaction.

8. The treatment of the nonlinear propagation near the source leaves a few dB of uncertainty. In
practice, this may be hard to tease out from the uncertainty in ground impedance, and may be
site specific. The shorter range NORTRIAL measurements from Haslemoen are more suited
for this.

9. Vegetation and topographic roughness were not taken into account here, except perhaps
indirectly via the impedance boundary. This is a tricky issue in itself, and especially when
there are so many other unknown factors.

10. How good is the assumption of horizontal homogeneity of atmospheric conditions? At times
at least, it is remarkably good, as shown in [4]. A more systematic study would be useful.

11. Comparison with other propagation models, such as ray-tracing, Fast Field Program and
engineering standards may be interesting. These methods lack generality, but, when applicable,
are more efficient than PE methods.
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A Appendix

A1 Scatter plots

Third octave sound exposure levels, SEL3, are presented here as scatter plots with measurements
along the x-axis and predictions along the y-axis. The diagonal is drawn as a solid line, and the
center frequency is indicated above each plot.
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Figure A.1 Predicted vs. measured 3rd octave SEL during temperature inversion, summer A data, 27
cases.
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Figure A.7 Terrain-following sonde data. Summer A, tower 112, 18 cases.
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Figure A.11 Upward refraction, winter A, tower 306, 34 cases
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A.2

For each plot the following information is listed: A case number assigned by us, the event
number of the detonation, the source and receiver, locations, the charge size, the receiver
heights, the date and time. Spectra across 4-100 Hz are plotted with a logarithmic f-axis. The red
solid lines are measured spectra. Blue simulated, dashed black the simple PE results, and blue
circles the source model. Horizontal black lines in the sound speed plots indicate the minimum
of source and receiver elevation. The sound speed profiles used in m/s are plotted against
altitude: effective sound speed in blue and thermal sound speed in red.
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A2.2 Winter A data

The first 83 are the ones from tower 306.
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A3 Tethersonde data processing

Summer data:

% Read tethersonde data

[z3,ws3,wd3,at3raw ,ap3,t3raw] = gettethparams_mod_kw (403,1994,
metbase94); YRaw T-data

[z3,ws3,wd3, at3 ,ap3,t3] = gettethparams(403,1994,metbase94);

tsep01_94=date2num( '01-Sep—-1994",°00:00:00.000 ") ;

tstart=tsep01_94 —1;

9%Remove bad data(usually when sonde just had a break)

jT=find (t3raw—tstart <21.289 & t3raw—tstart >21.28) ;%Botched T-
data

at3raw (jT)=at3raw (jT (end));

jT=find (t3-tstart <21.289 & t3—-tstart >21.28);%Botched T—-data

at3(jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));

z3(jT)=23(jT(end));

jT=find (t3-tstart <22.3 & t3—-tstart >22.2) ;%Botched T-data

at3(jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));

jT=find (t3-tstart <13.564 & t3—-tstart >13.559) ;%Botched T-data

at3(jT)=interpl (t3 ([jT(1),jT(end)]),at3 ([jT(1),jT(end)]),t3(jT))

wd3EjT)=interp1 (t3([jT(1),jT(end)]) ,wd3([jT(1),jT(end)]),t3(jT))
Ws3EjT)=interp1 (t3([jT(1),jT(end)]) ,ws3([jT(1),jT(end)]),t3(jT))

jT=find (t3-tstart <13.65 & t3—-tstart >13.63);%Botched T-data
at3 (jT)=at3 (jT(1));

wd3 (JT)=wd3(jT(1));

ws3 (jT)=ws3(jT(1));

jT=find (t3-tstart <14.352 & t3—-tstart >14.33);%Botched T—-data
at3(jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));

jT=find (t3—tstart <19.362 & t3—tstart >19.31);%Botched T-data
at3(jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));
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jT=find (t3—-tstart <20.303 & t3—-tstart >20.3);%Botched T-data

at3 (jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));

jT=find (t3—-tstart <20.48 & t3—-tstart >20.405) ;%Botched T-data

at3 (jT)=at3 (jT(1));

wd3 (jT)=wd3(jT (1))

ws3(jT)=ws3(jT(1));

jT=find (t3-tstart <20.524 & t3—-tstart >20.5);%Botched T-data

at3(jT)=at3(jT(end));

wd3(jT)=wd3(jT (end));

ws3(jT)=ws3(jT(end));

jT=find (not (t3—-tstart <22.303 & t3—-tstart >22.1) );%Botched T-
data (remove)

z3=z3(jT);

t3=t3(jT);

at3=at3(jT);

wd3=wd3(jT);

ws3=ws3(jT);

jT=find (not (t3—-tstart <14.7 & t3—-tstart >14.623) );%Botched T-
data (remove)

z3=z3(jT);

t3=t3(jT);

at3=at3(jT);

wd3=wd3(jT);

ws3=ws3(jT);

jT=find (not (t3—-tstart <23 & t3—-tstart >22.530) );%Botched T-data
(remove)

z3=z3(jT);

t3=t3(jT);

at3=at3(jT);

wd3=wd3(jT);

ws3=ws3(jT);

cosEW3=cos ((90-wd3)*pi/180) ;
cosNS3=cos (wd3xpi/180) ;
uwe=ws3.%(—cosEW3) ;
usn=ws3.%(—-cosNS3);

J%Replace 21/9 with raw data.
tsep=t3—tstart;

jt=find (abs(tsep —21.5) <.5);
tsepraw=t3raw—tstart;
jtraw=find (abs (tsepraw —21.5) <.5);
at3 (jt)=at3raw (jtraw);
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JInterpolation cartesian grid

[tt ,zz]=meshgrid (13:.02:23,10:5:1010);

TT=griddata (t3—-tstart ,z3/5000,at3 ,tt ,zz/5000) ;%Note
uu=griddata (t3—-tstart ,z3/5000,uwe, tt ,zz/5000);

vv=griddata (t3—-tstart ,z3/5000,usn,tt ,zz/5000);

scaling of z

%Above the grid etc:

[nz nt]=size(tt);

maxh = tethpeak_kw (z3,200); %Upper height of each tethersonde
flight

ttops=t3 (maxh(:,2))—-tstart;

ztops=maxh(:,1);

t=tt (1,:);

zcut=interpl (ttops , ztops ,t, "linear’, extrap’  );
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for jt=1:nt %Loop over
iinan=find (isnan (TT(:,jt))
iinan=min(iinan);
iinan=max(2,iinan);
TT(iinan:end, jt)=TT(iinan —1,jt);
iinan=find (isnan(uu(:,jt))
iinan=min(iinan);
iinan=max(2,iinan);
uu(iinan:end, jt)=uu(iinan —1,jt);
iinan=find (isnan(vv(:,jt))
iinan=min(iinan);
iinan=max(2,iinan);
vv(iinan:end, jt)=vv(iinan —1,jt);

zz (:,jt)>zcut(jt));

zz (:,jt)>zcut(jt));

zz (:,jt)>zcut(jt));

%QOutside data ,
TT(isnan (TT))=0;
uu(isnan (uu))=0;
vv(isnan(vv))=0;

readable by write_weatherfile.m

save tethdatainterp2 tt zz uu vv TT t zcut

Winter data:

% Read tethersonde data:

[z3,ws3,wd3, at3 ,ap3,t3] = gettethparams(403,1996, metbase96);
wdl=wdl-180;

h3=320+2z3;
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tfeb01_96=date2num (’01-Feb—-1996",°00:00:00.000 ") ;
tstart=tfeb01_96 —1;

jyes3=find (z3>0);
z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (z3<1050);
z3=z3(jyes3 ) ;ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (at3 <-2.5);
z3=z3(jyes3 ) ;ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

whichdate=floor (t3—tstart);

jyes3=find ( whichdate~=22 | (at3<-8 & whichdate==22) );

z3=723(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

whichdate=floor (t3—tstart);

jyes3=find ( whichdate~=21 | (at3>-11 & whichdate==21) );

z3=z3(jyes3 ) ;ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (t3—-tstart >21.531);

z3=z3(jyes3 ) ;ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (t3-tstart <21.6505 | t3—tstart >21.652);

z3=23(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

jyes3=find (t3—tstart >22.345 | t3—tstart <22.3);

z3=z3(jyes3 ) ;ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (t3-tstart <21.6505 | t3—-tstart >21.653);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (t3—-tstart <22.385 | t3—tstart >22.3856);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
jyes3);

jyes3=find (t3—tstart <21.613 | t3—tstart >21.615);

z3=723(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

jyes3=find (t3-tstart <22.436 | t3—-tstart >22.489);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3(jyes3);t3=t3(
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jyes3);

jyes3=find (t3-tstart <23.374 | t3—-tstart >23.377);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

jyes3=find (t3—tstart <23.438 | t3—-tstart >23.445);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

jyes3=find (ws3>0 & ws3<8);

z3=z3(jyes3);ws3=ws3(jyes3 ) ;wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

jyes3=find (t3—tstart <22.48 | t3—-tstart >22.51);

z3=z3(jyes3);ws3=ws3(jyes3);wd3=wd3(jyes3);at3=at3 (jyes3);t3=t3(
jyes3);

JuEW=ws3 . cosWE3;

c_of T = @(T) 20.03%sqrt(T+273.15);%linear: cst=340+.6:(T-15);
cosEW3=cos ((90-wd3)*pi/180) ;

cosNS3=cos (wd3*pi/180) ;

uwe=ws3.x( —cosEW3) ;

usn=ws3.%(—cosNS3);

JoInterpolation of thethersonde data

[tt ,zz]=meshgrid (21:.002:29,0:5:1010);

TT=griddata (t3—tstart ,z3/5000,at3 ,tt ,zz/5000) ;%Note scaling of z
uu=griddata (t3—-tstart ,z3/5000,uwe, tt ,zz/5000);

vv=griddata (t3—-tstart ,z3/5000,usn, tt ,zz/5000);

%Above the grid etc:

[nz nt]=size(tt);

maxh = tethpeak_kw (z3, 800); %Upper height of each tethersonde
flight

ttops=t3 (maxh(:,2))-tstart;

ztops=maxh(:,1);

t=tt (1,:);

zcut=interpl (ttops , ztops ,t, " linear’, extrap’ );

for jt=1:nt %Loop over times in interp grid
iinan=find (zz (:,jt)>zcut(jt));
iinan=min(iinan);
iinan=max(2,iinan);
TT(iinan:end, jt)=TT(iinan —1,jt);
iinan=find (zz (:,jt)>zcut(jt));
iinan=min(iinan);
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iinan=max(2,iinan);

uu(iinan:end, jt)=uu(iinan —1,jt);

iinan=find ( zz (:,jt)>zcut(jt));

iinan=min(iinan) ;

iinan=max(2,iinan);

vv(iinan:end, jt)=vv(iinan —1,jt);
end

%Outside data, set to O:

TT(isnan (TT))=griddata (t3—-tstart ,z3/5e3,at3 ,tt(isnan(TT)) ,zz(
isnan(TT))/5e3, ’'nearest’);

uu(isnan(uu))=griddata (t3—tstart ,z3/5e3 ,uwe, tt (isnan(uu)),zz(
isnan(uu))/5e3, ’'nearest’);

vv(isnan(vv))=griddata (t3—tstart ,z3/5e3,usn, tt(isnan(vv)),zz(
isnan(vv))/5e3, ’'nearest’);

%Save to file readable by write_weatherfile.m
save tethdatainterpF96 tt zz uu vv TT

A.4 Lists of NORTRIAL data selections

This section lists the selected data from the NORTRIAL database. We provide a case number (case,
defined in this report), a detonation event number (event, defined in NORTRIAL), the receiver
position (rec), and receiver height in m (h(m)). The latter three pieces of information uniquely
define the recording. We also list the measured (SELCnt) and simulated (SELCpe) C-weighted
SEL values.

A4l Summer quality A data

case event rec h(m) SELCnt SELCpe

5 70 306 2 84 87
7 73 112 30 77 78
11 76 306 2 88 89
13 77 112 4 108 106
14 81 412 4 84 81
16 82 306 8 98 101
18 83 112 30 107 105
19 83 306 1 56 74
20 84 306 1 61 76
21 87 306 1 86 89
23 88 306 1 99 101
25 91 306 1 63 69
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26
27
29
30
32
34
36
37
38
40
41
42
43
45
46
47
48
49
51
53
54
55
57
59
60
61
63
65
66
67
69
70
72
73
75
77
79
80
81
83
84
86
88
90
91
93
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92

93

94
139
143
144
149
150
151
157
159
160
161
162
163
164
166
167
168
169
170
172
173
174
177
178
179
180
182
182
183
183
184
185
186
188
189
189
189
190
191
192
194
195
195
196

306
306
306
112
306
306
306
306
112
112
112
306
306
306
112
112
112
306
306
112
112
306
306
306
306
306
306
306
112
306
112
306
306
306
306
112
112
306
412
306
306
306
112
112
306
306
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77
88
99
102
65
85
65
71
103
103
93
71
81
95
101
84
69
81
97
99
90
71
86
94
72
77
91
86
91
65
93
74
80
91
95
91
95
79
79
80
91
96
93
96
78
85

81

83
89
101
98
70
86
69
84
97
99
84
85
86
92
98
91
70
86
92
97
90
79
89
93
69
84
95
90
86
60
94
69
85
97
104
86
94
71
70
84
96
104
87
96
70
85



94

97

99
101
102
103
105
107
108
109
110
112
113
114
115
116
118
120
121
122
123
124
126

A4.2

case

197
199
200
202
204
205
206
207
208
211
212
213
214
215
216
217
218
219
220
220
221
222
223

306
306
306
306
412
306
306
306
306
306
306
306
306
306
306
306
306
306
306
212
306
306
306

0 = 00 = 00 = 0000 S = DNOWOOWS 0 00 0 = 0 0 0

Summer quality B1 data

5

7

9
15
17
23
25
27
31
34
35
36
38
39
42
43
47
49

event

65
66
67
71
72
77
79
79
80
82
82
83
84
84
85
85
87
88

rec
112
112
112
112
112
412
112
412
412
112
412
412
112
412
112
412
412
412

h(m)
30
30
30
30
30

8
30
8
8
30
8
8
30
8
30

o 00 o

97
82
78
71
93
80
75
81
74
82
78
80
73
73
74
87
86
79
71
67
75
72
79

SELCnt SELCpe

98
90
77
98
90
74
81
80
76
77
83
74
99
77
82
77
85
82

82

97
75
76
73
92
77
77
81
78
67
65
71
80
73
75
84
87
86
77
65
79
82
81

96
88
79
96
88
67
83
75
81
50
70
73
96
72
84
82
65
58
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51
52
53
56
57
61
64
66
67
70
72
81
83
86
96
99
107
115
119
122
133
141
152
157
173
174
187
194
195
204
210
212
227
228
254
264
269
273
274
287
290
305
321

89

90

90

91

91

92

93

94

94
140
141
145
146
147
152
153
158
160
161
162
165
168
171
172
177
177
181
183
183
187
188
189
195
195
207
209
210
211
211
215
216
222
226
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112
112
412
112
412
412
412
112
412
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
112
412
112
412
212
112
412
212
412
212
112
412
412
412
212
412
412
112
306

30
30

30

(o]

30

30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

30

30

N 00 00 O

30

0 00 0O = 00

30

106
97
79
79
74
77
73
81
73
90
78
98
89
83
89
79
96
77
74
72
92
70
88
70
85
72
75
76
73
78
71
71
77
71
72
78
92
78
75
77
88
72
74

83

106
97
59
84
68
74
64
52
59
92
91
97
89
86
89
82
94
69
73
72
80
71
84
57
82
62
74
67
64
73
61
62
70
65
77
81
91
46
71
80
90
56
60



A4.3

case
1

O 00 N O v i W N

BB A W W wwwwwww wihNhDNDNDNDNDNDNNNNRRRRRRRRR R
W NEFEFSWOWOLWMNOUUIEEA WNREFSOUOOWNO UL D WNRFERSUOUOBLWNO VIR WNRFR

h(m) SELCnt SELCpe

Winter quality A data
event rec
603 306 30
604 306 30
605 306 30
608 306 30
609 306 30
610 306 30
611 306 30
613 306 20
614 306 30
616 306 30
617 306 30
618 306 30
619 306 30
620 306 30
621 306 30
622 306 30
623 306 30
624 306 30
625 306 8
626 306 30
627 306 30
628 306 30
629 306 30
630 306 8
631 306 8
632 306 8
633 306 30
634 306 30
635 306 30
638 306 30
639 306 30
640 306 30
641 306 30
642 306 8
643 306 8
644 306 8
645 306 8
646 306 8
647 306 30
648 306 8
649 306 8
650 306 8
651 306 30

75
66
80
61
65
66
79
51
59
67
79
73
67
72
83
94
101
67
65
74
84
92
94
64
64
68
81
82
95
84
83
76
89
72
79
78
91
84
88
69
80
79
75

84

59
68
79
51
60
65
78
69
62
66
77
64
64
67
84
95
99
66
69
74
84
94
99
65
65
67
80
95
96
61
92
80
104
59
79
79
95
97
104
79
79
86
92
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